

QUARTERLY DATA SUMMARY REPORT SOIL VAPOR INTRUSION MONITORING (MAY – AUGUST 2010)

NWIRP Bethpage Bethpage, New York

Naval Facilities Engineering Command Mid-Atlantic

Contract No. N62470-08-D-1001 Contract Task Order WE06

November 2010

QUARTERLY DATA SUMMARY REPORT SOIL VAPOR INTRUSION MONITORING

(May - August 2010)

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT BETHPAGE, NEW YORK

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command
Mid-Atlantic
9742 Maryland Avenue
Norfolk, Virginia 23511-3095

Prepared and Submitted by: Tetra Tech NUS, Inc. 234 Mall Boulevard, Suite 260 King of Prussia, Pennsylvania 19406

Contract No. N62470-08-D-1001 Contract Task Order WE06

November 2010

PREPARED UNDER THE DIRECTION OF:

DAVE BRAYAÇK PROJECT MANAGER TETRA TECH NUS, INC.

NORFOLK, VIRGINIA

APPROVED FOR SUBMISSION BY:

JOHN J. TREPANÓWSKI/P.E.

PROGRAM MANAGER TETRA TECH NUS, INC.

KING OF PRUSSIA, PENNSYLVANIA

TABLE OF CONTENTS

SECT	<u>PAG</u>	<u>;Ε</u>				
ACRO	NYMSA-	1				
1.0	INTRODUCTION1-	1				
2.0	FIELD AND SAMPLING ACTIVITIES2-	1				
3.0	ANALYTICAL RESULTS 3-1					
REFE	RENCESR-	1				
APPE	NDICES					
	** (SEE ATTACHED CD) **					
	A SVPM Implant Retrofit Log Sheets B Air Sampling Log Sheets C Chain of Custody Records D Data Analytical Reports E Data Validation Summaries					
	TABLES					
NUME	<u>ER</u>					
2-1 3-1 3-2 3-3 3-4	Sample Summary Analytical Summary – Home #3 Analytical Summary SSD System Stack Sampling Analytical Summary SVPM Sampling Analytical Summary Outdoor Air Sampling					
NUME	FIGURES ER					
						

- 1
- 2
- General Location Map Site Location Map Soil Gas Sampling Results

ACRONYMS

APU Air Purification Unit

AS/SVE Air Sparging/Soil Vapor Extraction

bgs Below Ground Surface

CLEAN Comprehensive Long-Term Environmental Action Navy

COC Chain of Custody
CTO Contract Task Order
°F Degrees Fahrenheit
IND Indoor air sample

INDB Basement indoor air sample
INDL Living space indoor air sample

IS Initial Sampling

mL Milliliter

mL/min Milliliter per Minute

ND Non Detect

NWIRP Naval Weapons Industrial Reserve Plant

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

ODA Outdoor air

PCE Tetrachloroethene

PID Photoionization Detector

ppm Parts Per Million

PSSD Post Sub-Slab Depressurization

PSVE Post Soil Vapor Extraction system startup

PUS Post Air Purification Unit Installation Sampling

PVC Polyvinyl Chloride

SSB Sub-Slab

SSD Sub-Slab Depressurization

ST Stack

SVPM Soil Vapor Pressure Monitor

TCA 1,1,1-Trichloroethane

TCE Trichloroethene

Tetra Tech Tetra Tech NUS, Inc.

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound micrograms per cubic meter

1.0 INTRODUCTION

Tetra Tech NUS Inc. (Tetra Tech) under Contract Task Order (CTO) WE06 prepared this Quarterly Data Summary Report for the Naval Facilities Engineering Command Mid-Atlantic under the Comprehensive Long-Term Environmental Action Navy (CLEAN) contract number N62470-08-D-1001. This Report summarizes field activities conducted during the months of May, June, July, and August 2010. These activities included indoor air, outdoor air, and sub-slab vapor sampling conducted at Home #3, sub-slab depressurization (SSD) system stack monitoring and Soil Vapor Pressure Monitor (SVPM) soil gas sampling on Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Long Island, New York and in the residential neighborhood east of Site 1 at NWIRP Bethpage, Long Island (Figures 1 and 2).

Site 1 – Former Drum Marshalling Area was impacted by the historic releases of chlorinated solvents and was remediated via an air sparging/soil vapor extraction (AS/SVE) system between 1998 and 2002. The treatment and remedial goals were based on protection of groundwater. Soil gas testing conducted in January 2008 indicated elevated concentrations of Volatile Organic Compounds (VOCs) existing along the eastern boundary of Site 1 that could potentially affect the adjacent residential neighborhood (Tetra Tech, 2008a). Additional soil gas testing was conducted in the Town of Oyster Bay right-of-ways from October 2008 through January 2009 to evaluate the potential migration of contaminated soil vapor off-site (Tetra Tech, 2009a). Based on evaluation of this soil gas data, indoor air, outdoor air, and sub-slab soil vapor sampling was recommended to evaluate potential vapor intrusion into residential homes.

From January through April 2009, soil vapor intrusion sampling was conducted in the residential neighborhood located east and adjacent to Site 1. A total of 18 residential homes were sampled during investigation activities through April 2009 (Tetra Tech, 2009b). As an interim measure, air purification units (APUs) were placed in homes to treat vapors that may have entered the homes. Based on the sample results, eight homes did not require further sampling/remediation. Due to the sub-slab vapor and indoor air sampling results, SSDs were installed in six residential homes in May 2009. A total of ten homes were sampled in June 2009 to monitor and evaluate mitigation measures installed in homes with APUs, including the six homes with SSD systems (Tetra Tech, 2009c).

In August 2009, the second post SSD system sampling event was conducted. The sampling focused on the collection of indoor air, outdoor air, and SSD system stack samples at the six homes with SSD systems in operation. The August sampling event also included an outdoor air evaluation in and around the neighborhood (Tetra Tech, 2009d). The outdoor air testing was conducted to evaluate outdoor air quality that may affect indoor air concentrations.

The third post SSD sampling event was conducted in November 2009 at ten residential homes. Indoor air samples were collected at all ten homes, while six homes with a SSD system had samples collected from the SSD system stack (Tetra Tech, 2010). APUs were present at all ten homes being sampled. Outdoor air samples were also collected simultaneously during the indoor air sampling to evaluate any influence of ambient air on indoor air quality.

In December 2009, construction of an SVE Containment System along the eastern boundary of Navy property was completed. System start up activities began in December 2009 and were finished in early January 2010. The SVE Containment System is currently in operation at Site 1.

In March 2010, indoor air monitoring activities were conducted at ten residential homes located in the neighborhood adjacent to Site 1. Indoor air and SSD system stack samples were collected from six homes that were equipped with SSD systems and APUs, and indoor air samples were collected from four homes with APUs only. Outdoor air samples were also collected simultaneously during the indoor air sampling to evaluate any influence of ambient air on indoor air quality.

Air and vapor samples were analyzed for VOCs via United States Environmental Protection Agency (USEPA) TO-15 method. With concurrence from the New York State Department of Health (NYSDOH) and the New York State Department of Environmental Conservation (NYSDEC) the TO-15 list was modified to analyze for site specific compounds associated with Site 1. This work was conducted in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006).

2.0 FIELD AND SAMPLING ACTIVITIES

This section summarizes the field events that have taken place during July 2010 and August 2010.

2.1 July 2010 - Home #3

In July 2010, air-monitoring activities were conducted at home #3. The home was not occupied at the time of the sampling event. The two APUs located in the basement and living space were removed and the SSD System was shut off two weeks prior to the indoor air-monitoring event.

A sub-slab (SSB) soil vapor sample, indoor air (basement and living space) sample, and outdoor air sample was collected at Home #3 on July 28, 2010. The outdoor air sample was collected along with an indoor air sample to evaluate potential influence of ambient air on indoor air quality. The field activities for this sampling event are summarized as follows:

- Scheduled sampling with homeowner
- Re-established previous sampling location
- Collected a SSB vapor, indoor air, and outdoor air sample
- Shipped and analyzed samples for the modified TO-15 VOCs

SSB soil vapor, indoor air, and outdoor air samples were collected using SUMMA[®] canisters (6 liter) with pre-set regulators. The temporary SSB soil vapor sample location was installed approximately 10 inches from previous sample locations. The indoor air sample was collected at the center of the basement. The outdoor air sample was placed in an upwind direction, at the South East corner of the back yard. The SSB soil vapor sample, and the indoor and outdoor air samples were obtained over a 24-hour time period.

The average temperature during the July 2010 sampling event was 85 degrees Fahrenheit (°F). The predominant wind direction ranged from south to southeast, while the wind speed was 0 to 5 miles per hour. There was no precipitation during this two-day event.

2.2 August 2010 – SSD Stack and SVPM Soil Gas

In August 2010, the Sub-Slab Depressurization System stacks and the Soil Vapor Pressure Monitors (SVPM) were sampled for the modified TO-15 VOC analysis. Prior to the sampling activities, SVPMs were retrofitted with Geoprobe® stainless steel implants to minimize potential surface air infiltration and purge time. SVPM implant retrofit construction logs are located in Appendix A. Tubing (1/4 inch) with a six inch long stainless steel screen was placed in the one inch Polyvinyl Chloride (PVC) casing, down to

the screened interval in each SVPM. Annular space inside the PVC casing was filled with #1 Silica Quartz filter sand and a bentonite seal (approximately two foot thick) was installed approximately two or three feet above the screen. The annular space above the bentonite seal was filled with #1 Silica Quartz filter sand to approximately two feet below the top of casing. A cement and bentonite mix was installed in the remaining two feet of space to the top of casing. The polyethylene tubing was fixed with barbed fittings to a PVC cap and sampling port.

SSD System stack sampling activities began on August 24, 2010, after the completion of Geoprobe implant installation at the SVPMs. A photoionization detector (PID) measurement was collected from the SSD system stack sampling port prior to sample collection. PID measurements ranged between no detection and 1.8 parts per million (ppm) and were recorded on the air sampling log sheets (Appendix B). The SSD system stack samples were collected through polyethylene tubing, which was secured to a brass nipple fitting threaded into the SSD system exhaust sampling port. The SSD stack samples were obtained over a 30-minute time period. Once the sample was collected, the SSD System exhaust sampling port was sealed using a brass plug.

The SVE Containment System was shutdown at the completion of the SSD System stack sampling (August 24, 2010) and prior to SVPM soil gas sampling to avoid potential interferences and ensure collection of a representative soil gas sample. SVPM soil gas sampling was conducted on August 25, 2010 to August 26, 2010. The soil gas sampling procedures for each SVPM are as follows:

- Connect a tee and valve assembly to the sampling port of the SVPM
- Connect the vacuum pump to the tee and valve assembly
- Purge 2,500 to 3,000 milliliter (mL) of air from the soil gas point and sampling line using the vacuum pump at a rate of approximately 100 to 200 milliliter per minute (mL/min).
- Record the flow controller and SUMMA® canister number on the Soil Gas Sample Log Sheet
- Collect soil gas sample with SUMMA® Canister
- Ship and analyzed samples for the modified TO-15 VOCs

The SVE Containment System was re-started upon completion of SVPM sampling.

The average temperature during the August 2010 sampling event was 75 °F. The predominant wind direction was northerly and ranged from northwest to east northeast, while the wind speed was variable averaging 5 to 15 miles per hour during the sampling event. There was no precipitation during this four-day event.

2.3 Sample Management

The air and soil vapor samples collected during this quarter were shipped to Air Toxics Ltd. in Folsom, CA via overnight carrier (Federal Express) for the modified TO-15 analysis list. The sampling procedures for indoor air, outdoor air, sub slab samples, SSD system exhaust stack samples, and SVPM samples were in accordance with NYSDOH Guidance for Evaluating Soil Vapor Intrusion (NYSDOH, 2006).

The field sampling team maintained air sampling log sheets and a field logbook that summarized the following information:

- · sample identification
- date and time of sample collection
- · sample location description
- · identity of samplers
- sampling methods and devices (including canister and regulator ID numbers)
- · vacuum before and after samples were collected
- wind speed and direction (for outdoor air sampling)
- ambient temperature (for outdoor air sampling)

Table 2-1 presents a sample summary of the indoor air, outdoor air, SSB soil vapor, SSD system exhaust stack, and SVPM soil gas samples collected. Sample date corresponds to the end of the sample collection period (i.e., 24-hour for indoor air). Sample containers were labeled with a unique sample identifier as presented on Table 2-1.

Additional information regarding sample identification and sample collection was recorded in the field logbook and/or on the corresponding sample log sheets. Sample log sheets were completed for each sample collected and are provided as Appendix B. Chain of Custody (COC) Forms are provided in Appendix C.

2.4 Deviation from Work Plan

The August 2010 Soil Gas Sampling Work Plan Addendum for Site 1 identified additional samples to be collected to evaluate the effectiveness of the SVE Containment System. There were four deviations from the work plan during this quarter. Home #3 was not scheduled to be sampled during the month of July. However, the homeowner is planning to sell the home and requested the removal of the two APUs located in the basement and living space of the home. The NYSDOH and NYSDEC concurred that

indoor air quality samples should be collected from the home without the operation of the mitigation system in order to mimic natural conditions.

Three SVPMs, (SVPM-2007I, SVPM-11, and SVPM-12) were not sampled as scheduled during the August 2010 event. SVPM-2007I was retrofitted with a Geoprobe® implant on August 24, 2010 and was scheduled to be sampled on August 26, 2010. Field crews were unable to purge air from the poly tubing attached to the implant. An air compressor was used in an attempt to clear possible obstructions. The attempt was unsuccessful and the options for repair of the SVPM will be further evaluated. If a repair is not possible, SVPM-2007I will be abandoned and a new point will be installed to the same depth.

SVPM-11 and SVPM-12 were retrofitted with a stainless steel implant in January 2008. Field crews attempted to collect a soil vapor sample from both points during the August 2010 event and were unsuccessful. The implants would not provide a sustained flow of gas. Since the field crew could not increase the flow rate on SVPM-11 or SVPM-12, a sample could not be collected at either location. The repair of SVPM-11 and SVPM-12 will also be further evaluated. If the repairs are not possible, then SVPM-11 and SVPM-12 will be abandoned.

3.0 ANALYTICAL RESULTS

This section summarizes the analytical results from the indoor air, outdoor air, SSB soil vapor, SSD system stack, and SVPM soil gas sampling event conducted during July and August 2010. Based on previous sampling results, it was determined that trichloroethylene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) represented the primary chemicals of concern. Therefore, the analytical results for TCE, PCE, and TCA are the focus of the analytical discussions in this section. All reported results are presented in Appendix D. The sample results for Home #3 are summarized in Table 3-1. Details for each of the air and soil gas samples that were collected from Home #3, SSD stacks, and SVPMs are on the air sample log sheets provided in Appendix B. COC forms and the laboratory analytical reports are in Appendix C and D, respectively. Data validation summaries are presented in Appendix E.

Analytical results from the indoor air sampling are compared to the air guideline values presented in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006). The air guideline values used for evaluation of indoor air and sub-slab soil vapor are in the table below.

Air Guideline Values for Indoor Air and Sub-Slab Values

Chemical	Indoor Air Guideline Value (µg/m³)	Sub-Slab Guidance Value (µg/m³)
Tetrachloroethene	100 ¹	1,000 ²
Trichloroethane	5 ¹	250 ²
1,1,1-Trichloroethane	100 ²	1,000 ²

¹= Value derived from NYSDOH guidance (2006), Table 3.1

3.1 Home #3

The home was initially sampled on January 22, 2009. After sampling, an APU was installed in the basement as an interim mitigation measure. The sewer utility sump and observable cracks in the basement floor and walls were sealed at this time to reduce these potential pathways for soil vapor to enter the home. Based on the indoor air results, a second APU was installed on the first floor on February 26, 2009. Since the sub-slab concentrations for TCE and TCA were above the NYSDOH guidelines, an SSD system was installed on May 19, 2009 as a supplemental mitigation measure. Based on the SSD stack concentrations observed in September 2009, the SSD fan at Home #3 was upgraded after sample collection in November 2009 to increase the vacuum under the slab of the home.

² = Value derived from NYSDOH guidance (2006), Table 3.3 (Matrix 1 and 2) μg/m³ = micrograms per cubic meter of air

During the July 2010 sampling event, a SSB soil vapor sample, indoor air sample (basement and living space), and outdoor air sample were collected at Home #3. At the request of the homeowner, the APUs located in the basement and living space were permanently removed. In order to mimic natural conditions in the house, the SSD system was shut off two weeks prior to the sampling event. Sample results from each event are summarized on Table 3-1.

The results of the July 2010 sampling of SSB soil vapor gas indicate that the concentrations of TCE, PCE, and TCA were below the NYSDOH air guideline sub-slab guidance values. In addition, concentrations of TCE, PCE, and TCA in sub slab soil gas have been reduced at an average of 99.9% since the initial sampling event in January 2009. Also, the living space indoor air concentrations and the basement indoor air concentrations, without the operation of the APUs or the SSD system, are below the NYSDOH indoor air guideline values. TCE concentrations decreased by approximately 99.9% in the basement indoor air sample and living space indoor air sample since the initial sampling in January 2009. PCE and TCA have also shown significant decreases in concentrations.

By comparing the SSD System stack sample result collected in August 2010 to the initial stack sample results collected in June 2009 at Home #3, the TCE and TCA concentrations in the soil vapor underneath the home has decreased by approximately 98% and 94%, respectively. PCE had an initial concentration that was significantly lower than the other chemicals of concern, and experienced a 35% reduction.

3.2 SSD Stack Sampling Summary

Five SSD system stack samples were collected during the August 2010 sampling event. TCE concentrations in the five SSD stack samples have been reduced on average by 99.2% since the first sampling event in June 2009. PCE and TCA have similar decreases in concentrations at each SSD stack with TCA decreasing by 98.6% and PCE decreasing by 61.7%. The initial PCE contamination was lower than that of the other chemicals of concern, therefore the reduction of PCE was not as significant as TCE and TCA. Table 3-2 provides an analytical summary of the SSD system stack samples.

3.3 SVPM Sampling Summary

Ten SVPMs were sampled in August 2010 (see table 3-3). Samples were collected 8 feet below ground surface (bgs) (shallow points), 20 to 25 feet bgs (intermediate depth points), and 44 to 49 feet bgs (deep points). An evaluation of chemical constituents over time indicates that TCE, PCE, and TCA concentrations have been reduced since the initial sampling events conducted in 2008. TCA concentrations were reduced approximately 99.9% at all three depths. TCE concentrations at the deep and intermediate depth were reduced approximately 99.6%. The average reduction of TCE at the

shallow depth was 78.5%. PCE had the highest reduction (88%) at the intermediate depth. PCE has decreased at the deep and shallow depth at an average of 89.4% and 49.6%, respectively. Table 3-3 provides an analytical summary of the soil gas sampling.

3.4 Outdoor Air Sampling Summary

During the July 2010 and August 2010 sampling event, outdoor air samples were collected to evaluate potential influence of outdoor air on indoor air quality and to establish ambient outdoor quality. The outdoor air samples are used to represent upwind ambient air data at the time of indoor air sampling and soil vapor sampling. One outdoor air sample was collected during the July 2010 sampling event and four outdoor air samples were collected during the sampling event in August 2010. Table 3-4 provides an analytical summary of the outdoor air sampling conducted during the indoor air sampling events in July 2010 and August 2010. Although TCE, PCE, and PCA were detected in each of the samples, none of the detections were greater than NYSDOH air guideline values.

3.5 Sampling Summary

An SVE Containment System was constructed along the eastern boundary of Site 1 and began full time operation in January 2010. This system is currently operating to prevent further off site migration of contaminated soil vapor and to the extent practical, remediate contaminated soil vapor located off site. Based on the July 2010 sampling results at Home #3, the indoor air concentrations of targeted VOC's are below the NYSDOH air guideline values even without the APU and SSD mitigation systems operating. Also, sample results from the August 2010 event, shows that the SSD system stack concentrations and SVPM soil vapor concentrations have continued to decrease since June 2009, especially after the start up of the SVE Containment System in January 2010.

In November 2010, another round of indoor air monitoring will be conducted in the residential homes to evaluate the effectiveness of the mitigation systems both in the houses and on the Navy property. Off site soil gas testing will continue to be conducted in the residential neighborhood to confirm the effectiveness of the SVE Containment System to prevent further off-site migration.

REFERENCES

New York State Department of Health (NYSDOH), 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

Tetra Tech NUS, Inc. (Tetra Tech), 2008a. Site 1-Soil Vapor Investigation. Naval Weapons Industrial Reserve Plant, Bethpage, New York. April.

Tetra Tech NUS, Inc. (Tetra Tech), 2008b. Letter Work Plan-Site 1-Phase II Soil Vapor Investigation. Naval Weapons Industrial Reserve Plant, Bethpage, New York. September.

Tetra Tech NUS, Inc. (Tetra Tech), 2008c. Letter Work Plan-Site 1-Indoor Air Sampling. Naval Weapons Industrial Reserve Plant, Bethpage, New York. December.

Tetra Tech NUS, Inc. (Tetra Tech), 2009a. Site 1 – Phase II Soil Vapor Report, Site 1 – Former Drum Marshalling Area. Naval Weapons Industrial Reserve Plant, Bethpage, New York. August.

Tetra Tech NUS, Inc. (Tetra Tech), 2009b. Data Summary Report Soil Vapor Intrusion Investigation, Site 1 – Former Drum Marshalling Area. Naval Weapons Industrial Reserve Plant, Bethpage, New York. August.

Tetra Tech NUS, Inc. (Tetra Tech), 2009c. Quarterly Data Summary Report Indoor Air and SSD Monitoring (May, June, and July 2009). Naval Weapons Industrial Reserve Plant, Bethpage, New York. October.

Tetra Tech NUS, Inc. (Tetra Tech), 2009d. Quarterly Data Summary Report Indoor Air and SSD Monitoring (August, September, and October 2009). Naval Weapons Industrial Reserve Plant, Bethpage, New York. December.

Tetra Tech NUS, Inc. (Tetra Tech), 2010. Quarterly Data Summary Report Soil Vapor Intrusion Monitoring (November and December 2009, and January 2010). Naval Weapons Industrial Reserve Plant, Bethpage, New York. February.

United States Environmental Protection Agency (USEPA), 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially- Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). January.

Table 2-1 Sample Summary July 2010 and August 2010 Site 1 - Former Drum Marshaling Area NWIRP Bethpage, New York

Sample ID	Date(s) Collected	Duration of Sample	Sample Location	Event Type
BPS1-AR003-INDL-5	7/27/2010 - 7/28/2010	24 Hours	Living Space	PUS/PSSD/PSVE*
BPS1-AR003-INDL-5 DUP	7/27/2010 - 7/28/2010	24 Hours	Living Space	PUS/PSSD/PSVE*
BPS1-AR003-INDB-5	7/27/2010 - 7/28/2010	24 Hours	Basement	PUS/PSSD/PSVE*
BPS1-AR003-SSB3	7/27/2010 - 7/28/2010	24 Hours	Subslab	PUS/PSSD/PSVE*
BPS1-AR003-ODA3	7/27/2010 - 7/28/2010	24 Hours	ODA	PUS/PSSD/PSVE*
BPSI-AR002-ST05	8/24/2010	30 Minutes	SSD Stack	PSSD/PSVE**
BPS1-AR003-ST05	8/24/2010	30 Minutes	SSD Stack	PSSD/PSVE**
BPS1-AR004-ST05	8/24/2010	30 Minutes	SSD Stack	PSSD/PSVE**
BPS1-AR013-ST05	8/24/2010	30 Minutes	SSD Stack	PSSD/PSVE**
BPS1-AR013-ST05 DUP	8/24/2010	30 Minutes	SSD Stack	PSSD/PSVE**
BPS1-AR014-ST05	8/24/2010	30 Minutes	SSD Stack	PSSD/PSVE**
BPS1-AR002-ODA4	8/24/2010	8 Hours	ODA	PSSD/PSVE**
BPS1-SVPM-2002S	8/25/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPS1-SVPM-2002I	8/25/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPS1-SVPM-2002D	8/25/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPS1-SVPM-2003D	8/25/2010	30 Minutes	Basement	PSSD/PSVE**
BPS1-SVPM-ODA	8/25/2010	8 Hours	ODA	PSSD/PSVE**
BPSI-SVPM-2003I	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-2004I	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-2004I DUP	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-2004D	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-2007D	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-11S	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-12S	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-12S DUP	8/26/2010	30 Minutes	Soil Gas	PSSD/PSVE**
BPSI-SVPM-ODA	8/26/2010	8 Hours	ODA	PSSD/PSVE**

Notes:

DUP = Duplicate Sample

INDB = Basement Indoor Air

INDL = Living Space Indoor Air

ODA = Outdoor Air

PUS = Post Air Purification Unit Installation Sampling

PSSD = Post SSD Startup Sampling

PSVE = Post Soil Vapor Extraction Containment System startup

SSD = Sub-slab Depressurization System

ST = Stack

^{*}Air purification units were permanently removed and the SSD system was temporarily shut down on 7/13/10. Sample collection was completed on 7/28/2010 and the SSD was restarted shortly after the last sample was collected.

^{**}SVE Contanment system was shut down approximately 24 hours prior to PSVE sampling

Table 3-1 Analytical Summary Home #3

Site 1 - Former Drum Marshaling Area NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m³)	PCE (µg/m³)	TCA (µg/m³)
INDOOR AIR SAMPLES		NYSDOH Air Gu	ideline Value	5	100	100*
BPS1-AR003-IND2	2/18/2009	Living Space	IS	110	3.1	74
BPS1-AR003-IND5	3/12/2009	Living Space	PUS	2.8	ND	5.2
BPS1-AR003-IND5 DUP	3/12/2009	Living Space	PUS	3.0	ND	5.5
BPS1-AR003-INDL-01	6/23/2009	Living Space	PSSD	16	2.4	30
BPS1-AR003-INDL-02	8/26/2009	Living Space	PSSD	10	0.43 J	5.2
BPS1-AR003-INDL-03	11/17/2009	Living Space	PSSD	1.1	ND	5.2
BPS1-AR003-INDL-4	3/3/2010	Living Space	PSSD/PSVE	0.64	ND	3.7
BPSI-AR003-INDL-5	7/28/2010	Living Space	PSVE ⁽²⁾	0.16 J	0.28 J	3.3
BPSI-AR003-INDL-5 DUP	7/28/2010	Living Space	PSVE ⁽²⁾	0.15 J	0.28 J	2.9
BPS1-AR003-IND	1/22/2009	Basement	IS	180	4.3	95
BPS1-AR003-IND DUP	1/22/2009	Basement	IS	180	4.2	98
BPS1-AR003-IND3	2/26/2009	Basement	PUS	34	0.75	27
BPS1-AR003-IND3 DUP	2/26/2009	Basement	PUS	31	0.72	27
BPS1-AR003-IND4	3/12/2009	Basement	PUS	32	0.49 J	41
BPS1-AR003-INDB	4/30/2009	Basement	PUS	52	0.38 J	65
BPS1-AR003-INDB DUP	4/30/2009	Basement	PUS	50	0.54	64
BPS1-AR003-INDB-01	6/23/2009	Basement	PSSD	79	1.1	19
BPS1-AR003-INDB-02	8/26/2009	Basement	PSSD	27	1.3	4
BPS1-AR003-INDB-03	11/17/2009	Basement	PSSD (1)	5.1	0.58	0.78
BPS1-AR003-INDB-4	3/3/2010	Basement	PSSD/PSVE	ND	ND	ND
BPSI-AR003-INDB-5	7/28/2010	Basement	PSVE ⁽²⁾	0.27 J	0.28 J	1.9
SUB-SLAB SOIL VAPOR S	SAMPLES	NYSDOH Sub-S	lab Guideline	250*	1,000*	1,000*
BPS1-AR003-SSB	1/22/2009	Subslab	IS	13,000	130	10,000
BPS1-AR003-SSB2	8/26/2009	Subslab	PSSD	260	3.7	38
BPSI-AR003-SSB3	7/28/2010	Subslab	PSVE ⁽²⁾	14	0.96	2.3
SSD STACK SAMPLES						
BPS1-AR003-ST01	6/22/2009	SSD Stack	PSSD	7,700	92	3,600
BPS1-AR003-ST02	8/25/2009	SSD Stack	PSSD	10,000	170	4,200
BPS1-AR003-ST03	11/16/2009	SSD Stack	PSSD	6,200	64	2,900
BPS1-AR003-DUP02	11/16/2009	SSD Stack	PSSD	5,400	61	2,200
BPS1-AR003-ST04	3/2/2010	SSD Stack	PSSD/PSVE	3.8	0.82	0.98
BPS1-AR003-ST05	8/24/2010	SSD Stack	PSSD/PSVE ⁽²⁾	4.3	2.4	2.4

Notes:

Highlighted rows show analytical results for this reporting period.

TCE = TrichloroetheneST = SSD Stack samplePCE = TetrachloroetheneSSB = Sub-slab SampleTCA = 1,1,1-TrichloroethaneND = not detectedINDB = Basement indoor air sample $\mu g/m^3 = micrograms$ per cubic meterINDL = Living Space indoor air sampleJ = Estimated Value

IS = Initial Sampling

BOLD = Concentration exceeds NYSDOH Guideline value

PSSD = Post Sub-slab Depressurization (SSD) System Startup Sampling, APU also operating

PUS = Post Air Purification Unit (APU) Installation Sampling PSVE = Post Soil Vapor Extraction Containment system startup

^{*} Value derived from Table 3.3 (Matrix 1 and 2), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006)

⁽¹⁾ After sample collection in November 2009, the SSD system fan was upgraded to increase the vacuum under the subslab of Home #3.

⁽²⁾ Air purification units were removed and the SSD system was temporarily shut down on 7/13/10. Sample collection was completed on 7/28/2010 and the SSD was restarted shortly after the last sample was collected.

Table 3-2 Analytical Summary SSD System Stack Samples Site 1 - Former Drum Marshaling Area NWIRP Bethpage, New York

Home #	Mitigation Type	Date Collected	Sample ID	Sample Type	Event Type	TCE (µg/m³)	PCE (µg/m³)	TCA (µg/m³)
	<u> </u>	1/21/2009	BPS1-AR002-SSB	Subslab	IS	16,000	310	15,000
		6/22/2009	BPS1-AR002-ST01	SSD Stack	PSSD	11,000	280	5,900
		8/25/2009	BPS1-AR002-ST02	SSD Stack	PSSD	12,000	460	5,300
	APU/SSD	8/25/2009	BPS1-AR002-ST02 DUP	SSD Stack	PSSD	12,000	500	5,400
2	7 11 07002	11/16/2009	BPS1-AR002-ST03	SSD Stack	PSSD	9,900	330	3,800
		3/1/2010	BPS1-AR002-ST04 *	SSD Stack	PSSD/PSVE	11	2.4	1.7
		3/1/2010	BPS1-AR002-ST04-DUP *	SSD Stack	PSSD/PSVE	12	2.4	1.9
		8/24/2010	BPSI-AR002-ST05* ⁽¹⁾	SSD Stack	PSSD/PSVE	9.6 J	3.9 J	1.2 J
		1/22/2009	BPS1-AR003-SSB	Subslab	IS	13,000	130	10,000
		8/26/2009	BPS1-AR003-SSB2	Subslab	PSSD	260	3.7	38
		7/28/2010	BPS1-AR003-SSB3	Subslab	PSVE only	25	2.0 J	3.6 J
		6/22/2009	BPS1-AR003-ST01	SSD Stack	PSSD	7,700	92	3,600
	APU/SSD	8/25/2009	BPS1-AR003-ST02	SSD Stack	PSSD	10,000	170	4,200
3	, ii	11/16/2009	BPS1-AR003-ST03	SSD Stack	PSSD	6,200	64	2,900
		11/16/2009	BPS1-AR003-ST03 DUP	SSD Stack	PSSD	5,400	61	2,200
		3/2/2010	BPS1-AR003-ST04 *	SSD Stack	PSSD/PSVE	3.8	0.82	0.98
		8/24/2010	BPSI-AR003-ST05*	SSD Stack	PSSD/PSVE	4.3	2.4	2.4
		1/21/2009	BPS1-AR004-SSB	Subslab	IS	1,400	42	2,100
		6/25/2009	BPS1-AR004-ST01	SSD Stack	PSSD	160	2	190
1 1	APU/SSD	6/25/2009	BPS1-AR004-ST01 DUP	SSD Stack	PSSD	160	1.7	180
4		8/25/2009	BPS1-AR004-ST02	SSD Stack	PSSD	360	31	210
		11/17/2009	BPS1-AR004-ST03	SSD Stack	PSSD	300	17	140
		3/2/2010	BPS1-AR004-ST04 *	SSD Stack	PSSD/PSVE	1.8	1.5	0.21 J
		8/24/10	BPSI-AR004-ST05*	SSD Stack	PSSD/PSVE	2.3 J	1.9 J	0.17 J
		2/26/2009	BPS1-AR013-SSB	Subslab	IS	230	11	420
		2/26/2009	BPS1-AR013-SSB DUP	Subslab	IS	250	12	440
		6/24/2009	BPS1-AR013-ST01	SSD Stack	PSSD	70	68	84
13	APU/SSD	8/25/2009	BPS1-AR013-ST02	SSD Stack	PSSD	48	8.6	58
13		11/16/2009	BPS1-AR013-ST03	SSD Stack	PSSD	29	4.8	30
		3/2/2010	BPS1-AR013-ST04 *	SSD Stack	PSSD/PSVE	1.1	1.3	1.8
		8/24/2010	BPSI-AR013-ST05*	SSD Stack	PSSD/PSVE	0.87	2.20	0.31 J
		8/24/2010	BPSI-AR013-ST05 DUP*	SSD Stack	PSSD/PSVE	0.94	2.50	0.34 J
		3/11/2009	BPS1-AR014-SSB	Subslab	IS	290	15	970
		6/24/2009	BPS1-AR014-ST01	SSD Stack	PSSD	88	13	110
14	APU/SSD	8/26/2009	BPS1-AR014-ST02	SSD Stack	PSSD	30	10	43
		11/17/2009	BPS1-AR014-ST03	SSD Stack	PSSD	12	5.3	13
		3/1/2010	BPS1-AR014-ST04 *	SSD Stack	PSSD/PSVE	1	1.6	0.95
		8/24/2010	BPSI-AR014-ST05*	SSD Stack	PSSD/PSVE	0.55	2.90	0.34 J

NOTES:

Bold values indicate exceedance of NYSDOH guideline values

Highlighted rows show analytical results for this reporting period.

* Sample collected after SVE Containment System began operation in January 2010

IS = Initial Sampling

PSSD = Post SSD Installation Sampling

PSVE = Post Soil Vapor Extraction Containment system start up

(1) APUs were removed from the home on 7/13/10.

TABLE 3-3 Analytical Comparison of Detections Soil Vapor Pressure Monitors Site 1 - Former Drum Marshalling Area NWIRP Bethpage, New York

	SVP	M 11		SVPM 12				SVPN	1 2002				SVPN	/I 2003				SVPM 2004			SVPI	M 2007
Depth - bgs	24 F	eet		25 Feet		8 F	eet	20	Feet	44	Feet	20	Feet	49	Feet		20 Feet		49	Feet	49	Feet
Sample ID	SVPM11S-24	BPSI - SVPM-11S	SVPM12S-25	BPSI - SVPM-12S	BPSI - SVPM-12S DUP	BPSI - SG2002-08	BPSI - SVPM-2002S	BPSI - SG2002-20	BPSI - SVPM-2002I	BPSI - SG2002-44	BPSI - SVPM-2002D	BPSI - SG2003-20	BPSI - SVPM-2003I	BPSI - SG2003-49	BPSI - SVPM-2003D	BPSI - SG2004-20	BPSI - SVPM-2004I	BPSI - SVPM-2004I DUP	BPSI - SG2004-49	BPSI - SVPM-2004D	BPSI - SG2007-49	BPSI - SVPM-2007D
Date	January-08	August-10	January-08	August-10	August-10	October-08	August-10	October-08	August-10	October-08	August-10	October-08	August-10	October-08	August-10	October-08	August-10	August-10	October-08	August-10	October-08	August-10
VOCs (µg/m3)																						
Trichloroethene	7,200	3,100	73,000	1,200	1,200	34,000	17	89,000	8	26,000	10	82	0.36 J	710	5.2	550	0.28 J	0.26 J	600	0.47	400	1.5
Tetrachloroethene	5,300	330	ND	55	53	420	3	740	1.8	48 J	4	14	5	8.9	2.5	1,000	1.8	2.1	580	2.9	5.3 J	2.7
1,1,1-Trichloroethane	2,400	16	36,000	71	74	21,000	1.2	52,000	0.68	27,000	1	170J	0.23 J	720J	1.2	460	0.20 J	0.17 J	480	0.33 J	870	1.5
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.028 J	ND	ND	ND	0.022 J	ND	ND	ND	ND	ND	0.016 J	0.028 J	ND	0.042 J	ND	0.036 J
1,1-Dichloroethane	63	ND	710	1.2 J	1.3 J	170	0.017 J	680	0.014 J	490	0.027 J	0.49 J	ND	8.6	0.026 J	44	0.072 J	0.079 J	74	0.030 J	3.0 J	0.041 J
1,1-Dichloroethene	ND	ND	1,700	ND	ND	220	0.071 J	890	0.037 J	480	ND	2	ND	23	ND	7.1	0.043 J	ND	ND	ND	13	ND
cis-1,2-Dichloroethene	860	38	200J	140	150	49 J	ND	170	ND	130	0.022 J	ND	ND	1.6	ND	4.6	ND	ND	ND	ND	ND	0.95
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	0.076 J	ND	0.087 J	ND	0.054 J	ND	ND	ND	0.063 J	ND	0.065 J	0.056 J	ND	0.078 J	ND	0.11 J
trans-1,2-Dichloroethene	e 64	4.1 J	ND	2.2 J	2.5 J	ND	ND	3.9	0.015 J	ND	ND	ND	ND	0.054 J								

bgs - Below Ground Surface

µg/m³ = micrograms per cubic meter

J = estimated value

ND = No Detect

Table 3-4
Analytical Summary
Outdoor Air Sampling
Site 1 - Former Drum Marshalling Area
NWIRP Bethpage, New York

Sample ID	BPS1-AR003-ODA-3	BPS1-AR002-ODA-4	BPS1-SVPM-ODA	BPS1-SVPM-ODA	Frequency of
Sample Collection Date	7/28/2010	8/24/2010	8/25/2010	8/26/2010	Detections
Volatile Organics (ug/m³)					
1,1,1-TRICHLOROETHANE	0.07 J	0.062 J	0.036 J	0.037 J	4 of 4
1,1-DICHLOROETHANE	ND	ND	ND	ND	0 of 4
1,1-DICHLOROETHENE	ND	ND	ND	ND	0 of 4
1,2-DICHLOROETHANE	0.27 J	0.076 J	0.082 J	0.10 J	4 of 4
CIS-1,2-DICHLOROETHENE	ND	ND	ND	0.026 J	1 of 4
TETRACHLOROETHENE	0.16 J	0.16 J	0.27 J	0.24 J	4 of 4
TRANS-1,2-DICHLOROETHENE	ND	ND	ND	ND	0 of 4
TRICHLOROETHENE	0.22 J	0.048 J	0.044 J	0.040 J	4 of 4
VINYL CHLORIDE	ND	ND	ND	ND	0 of 4

Notes:

Sample collection date indicates the day of collection. Samples ran for 24 hours prior to collection. $\mu g/m^3 = micrograms per cubic meter$

ND = Non-Detect Value

J = Estimated Value

APPENDIX A

SVPM Implant Retrofit Log Sheets

WELL NO.: <u>SUPM-20025</u>

	Tetra Tech NUS, Inc. Ceonsol	e Implant Retrobit &	5 Soil Vapor 11-155Use Monitor
	PROJECT NUITR P Bedfrag e	LOCATION <u>Side 1</u>	DRILLER SUPM DECVIOUSLY
	PROJECT NO. 112602019 DATE BEGUN 8/2-3/10	BORING 8/23/10 DATE COMPLETED 8/23/16	DRILLING installed January METHOD 2009 This document
:	FIELD GEOLOGIST R. SOK GROUND ELEVATION	DATUM	DEVELOPMENT in whin + construction METHOD Only
	ORGORD ELEVATION		WE1100
J.		ELEVATION TOP OF RISER:	<u></u>
ACAD: FORM_MWFM.dwg 6//20/99	FLUSH MOUNT—SURFACE CASING WITH LOCK	TYPE OF SURFACE SEAL DOLLAR COLLECTIVE CASING: MOUNT COLLECTIVE CASING: I.D. OF PROTECTIVE CASING: DIAMETER OF HOLE: TYPE OF RISER PIPE: RISER PIPE I.D.: TYPE OF BACKFILL/SEAL:	Flush 6" 5"
	Yull ID	TYPE OF SEAL as and pol	Laround implat; 7.00 170C
	Poly tubing	ELEVATION/DEPTH TOP OF SCR TYPE OF SCREEN: PUC SLOT SIZE × LENGTH: O.O.O.O.C TYPE OF SAND PACK: ALOUA DIAMETER OF HOLE IN BEDROCK	dimplant,
	8.72 below TOC The Steinless steel Coprobe Impair! 9.32 below TOCI	ELEVATION / DEPTH BOTTOM O ELEVATION / DEPTH BOTTOM OF ELEVATION/DEPTH BOTTOM OF BACKFILL MATERIAL BELOW SAN	F SAND: 9.32' / TOC HOLE: 9.32' / TOC

Tetra Tech NUS, Inc. George	be Implant Retroat por	- Soil Vapor Prassure Monite
PROJECT NO. 112602019	e LOCATION <u>site</u> BORING NA	DRILLER SVPM graviously DRILLING Installed January
DATE BEGUN 8/2-3/10 FIELD GEOLOGIST K, 50 L	DATE COMPLETED 8/23/1	DEVELOPMENT IMPLANT CONSTRU
GROUND ELEVATION	DATUM	METHOD ON W
	ELEVATION TOP OF RISER:	
FLUSH MOUNT—SURFACE CASING WITH LOCK	TYPE OF PROTECTIVE CASIN COVE I.D. OF PROTECTIVE CASIN DIAMETER OF HOLE: TYPE OF RISER PIPE: RISER PIPE I.D.:	PVC Sound tubing ' # 1 5,11 ca From TOC
Yull I'D	TYPE OF SEAL GROUND 318 11 Bentonlife ELEVATION/DEPTH TOP OF	poly tubing. Hote Plug SANDinside asing: 1951/ TOC
Poly tubing	ELEVATION/DEPTH TOP OF TYPE OF SCREEN: PVC. SLOT SIZE x LENGTH: O.	
Geographic Steel Constant	TYPE OF SAND PACKENCO	
21.81'below ====================================	DIAMETER OF HOLE IN BEI	DROCK:, <i>NA</i>
	ELEVATION / DEPTH BOTTO ELEVATION / DEPTH BOTTOM ELEVATION/DEPTH BOTTOM BACKFILL MATERIAL BELOV	OM OF SAND: 22.71/10C OF HOLE: 2271/10C

WELL NO .: 5 VPM-2002D

	Tetra Tech NUS, Inc.	Geoprobe	Implant Retrofit +	or Soil Vapor Pressure Monider
	PROJECT NO. 11260			DRILLER 5 VPM previously
	PROJECT NO. 11260 DATE BEGUN 8/23	1019 BO	RING 1/14 TE COMPLETED 8/23/10	DRILLING Installed Tanuary METHOD 2009 This documents
	FIELD GEOLOGIST	1.50k		DEVELOPMENT implant construction METHOD Chy.
	GROUND ELEVATION	DA	TUM	METHOD Only.
INL			ELEVATION TOP OF RISER:	
56/97	V: ··		T-75 05 01/25 05 05 11	15 16 16
// 67/			Benton te plug - 0.	I replant : Coment/
WFM.d	FLUSH MOUNT		— TYPE OF PROTECTIVE CASING:	Flush mount
¥.	SURFACE CASING WITH LOCK		I.D. OF PROTECTIVE CASING:	Le "
D: FO	112111 200.1			
Ý			DIAMETER OF HOLE: 2.25	
			— TYPE OF RISER PIPE: PVC	
			RISER PIPE I.D.:	
			TYPE OF BACKFILL/SEAL:	und tubing: #15ilica
			Quarter 40.2'6	clow to TOC
			— ELEVATION/DEPTH TOP OF SEA	L: 36.0/70C
		3/5	TYPE OF SEALO COLLAND AS	
		23	TYPE OF SEALOGOUND DO 3/11 Bendonte Hole	Plug
		43		9
		3 3 3 3 3 3 3 3 3 3	ELEVATION/DEPTH TOP OF SAN	10/nside Casing: 40,00 TO C
	21 11	4 -		· 0·
	14" ID poly tubing			
			51 514 TON (DEDT), TOD OF COS	CHOIL'
		墨丰富	— ELEVATION/DEPTH TOP OF SCR TYPE OF SCREEN: $\mathcal{P}(/)$	
		L	SLOT SIZE × LENGTH: 0,0	10 5 lot x 2'
				,
			TYPE OF SAND PACK: OCOUNG	(Implant,
	42.60 below TOC			1/1
	6" Steinless Steel		DIAMETER OF HOLE IN BEDROO	K: //4
	42.60 below TOC 6" Stainless Steel Geograph Implant 43.0'60 bow TOC	TOTAL STATE OF THE	ELEVATION / DEPTH BOTTOM (OF SCREEN: 43, 34 TOC
	43.0'6ebwTac		ELEVATION / DEPTH BOTTOM (11
			ELEVATION/DEPTH BOTTOM OF	
			BACKFILL MATERIAL BELOW SA	ND: _/U/A

WELL NO.: <u>SUPM-2003</u> I

Tetra Tech NUS, Inc. Geograp	e Implant Petrolit for s	Soil Voyor Pressure Monider
PROJECT NWIAP Bernar	LOCATION_5, Le 1	DRILLER SUPM OF PURCHS U
PROJECT NWIAP BUTMOSE PROJECT NO. 11202019	BORING JA	DRILLING installed January
DATE BEGUN 8/23/10 FIELD GEOLOGIST 2 30 k	DATE COMPLETED 8/23/10	METHOD 2009 This dorument
GROUND ELEVATION	DATUM	DEVELOPMENTIMALANT CONSTRUCTION, METHOD ONLY
	ELEVATION TOP OF RISER:	
108	TYPE OF SURFACE SEALDAR	and inde at coment
	Bentonite Plug -0	ound implant: Cement!
FLUSH MOUNT	TYPE OF PROTECTIVE CASIN	IG: <u>Flush mou</u> nt
SURFACE CASING	I.D. OF PROTECTIVE CASING	
WITH LOCK	I.D. OF PROTECTIVE CASING	· — — — — — — — — — — — — — — — — — — —
	DIAMETER OF HOLE: 2	.25"
	TYPE OF RISER PIPE: ρ	VC
	RISER PIPE I.D.:	
	TYPE OF BACKFILL/SEAL: A	sound tubing #15ilica
	Quartz \$ 0.2	sound tubing: #15:lica
	ELEVATION/DEPTH TOP OF S	SEAL: 15,00% TOC
35		1
	TYPE OF SEAL around 3/8" Bentonite	polytubingo
37	JIR BENEGICIE	More Pills
	ELEVATION/DEPTH TOP OF S	SANDINA de caging: 19.03/ TOC
 		J
Yy" ID Aory Kubingt		
Aory Kerbingt		i
	ELEVATION/DEPTH TOP OF	
	TYPE OF SCREEN: ρ_V	
	SLOT SIZE x LENGTH: O.O	10 SHOTY 2
	TYPE OF SAND PACKSON	ad to alout
22.0 below Tor #	TYPE OF SAND PACKENON	rtz
(e"510) n) 455 5/40/		1 1A
Geography Implant 2	DIAMETER OF HOLE IN BEDI	₹UUK: _ <i>_√ ∨7³</i>
Ceoprobe Implant 22,50' be low TOC:	ELEVATION / DEPTH BOTTO	M OF SCREEN: 2268/ 70C
	ELEVATION / DEPTH BOTTO	00 × 60 / 4
	ELEVATION/DEPTH BOTTOM	00.701 -0
	BACKFILL MATERIAL BELOW	SAND: A JA

WELL NO.: 51/11-20030

	Tetra Tech NUS, Inc. George of	implant Retrofit cor soil vapor Pressure monitor
	PROJECT A) WIRP BOVAPOG LOC PROJECT NO. 11202019 BOV DATE BEGUN 8/23/10 DATE FIELD GEOLOGIST 1. 30 K	DRILLER SUPM PREVIOUS LY RING NA TE COMPLETED 8/23110 DEVELOPMENT & MACON CONSTRUCT METHOD 2009. This document METHOD 2009. This document
	OKOGNO LELVATIONOX	TOTAL DILANGE
3 INL	/	ELEVATION TOP OF RISER:
ACAD: FORM_MWFM.dwg 07/20/99		TYPE OF SURFACE SEAL: asound Implant (ement) Bentonite ling - 0.2 recourtoc to toc TYPE OF PROTECTIVE CASING: Flush mount
ORM_MV	SURFACE CASING WITH LOCK	I.D. OF PROTECTIVE CASING:
ACAD: F		DIAMETER OF HOLE: 2,25 ²¹
,		TYPE OF RISER PIPE: PUC
		RISER PIPE I.D.: / //
		Type of BACKFILL/SEALOGOUND Libing: #15:16 CO. Quarte to 0.2 Lelow TOC to FOCKE
		— ELEVATION/DEPTH TOP OF SEAL: 340170C
		- TYPE OF SEALOGOUND POLY FISHING! 318" Bentonide Hole plus
	74" I.D.	— ELEVATION/DEPTH TOP OF SANDIVAIDE GOING, 38,30 / TO C
	Poly Lubing	
		— ELEVATION/DEPTH TOP OF SCREEN: <u>40,99', TOC</u> TYPE OF SCREEN: <u>PVC</u>
	41.49 below TOC	SLOT SIZE x LENGTH: 0.010 510 f x 2'
	4"Stainlessasteel Reprobe Implant	TYPE OF SAND PACK: acound implant!
		DIAMETER OF HOLE IN BEDROCK:
	41,99 6clow TOCH 55	ELEVATION / DEPTH BOTTOM OF SCREEN: 42.991/ TOC
		ELEVATION / DEPTH BOTTOM OF SAND: 42.991/ TOC
		BACKFILL MATERIAL BELOW SAND: NA

WELL NO .: 51/19/1-2004/I

	Tetra Tech NUS, Inc. Geography	inplant Retrolit Fersoll Vapor Pressure Moniday
ı	PROJECT NO. 112 GOZO19 BOF DATE BEGUN 8/24/10 DATE FIELD GEOLOGIST R. 602	
INI INI		— ELEVATION TOP OF RISER:
ACAD: FORM_MWFM. dwg 07/20/99	FLUSH MOUNT—SURFACE CASING WITH LOCK	TYPE OF SURFACE SEAL: asound implant 'Come it bentonite plug - 0.3 below to c to to c TYPE OF PROTECTIVE CASING: Hush Mount [ONE I.D. OF PROTECTIVE CASING: 6" DIAMETER OF HOLE: 2,25" TYPE OF RISER PIPE: PVC RISER PIPE I.D.: 1" TYPE OF BACKFILL/SEAL: as and tubing: #1 / 5. hica Qualitz to 0, 3' below to c — ELEVATION/DEPTH TOP OF SEAL: 17.80/1 TOC TYPE OF SEAL: asound poly tubing: 3/8" (3 entering of the plug) — ELEVATION/DEPTH TOP OF SAND: wade as ing 21 for to c
	24,17 Schwios or sterinless stering beoprobe Implant 24,17 below Tot	ELEVATION/DEPTH TOP OF SCREEN: TYPE OF SCREEN: SLOT SIZE × LENGTH: DIAMETER OF HOLE IN BEDROCK: ELEVATION / DEPTH BOTTOM OF SCREEN: ELEVATION / DEPTH BOTTOM OF SAND: ELEVATION / DEPTH BOTTOM OF HOLE: BACKFILL MATERIAL BELOW SAND: 12,97/10C

WELL NO.: 5VPM-2004D

Tetra Tech NUS, Inc. George Implant Redrofit for soil Nagor Pressure Monitor							
PROJECT NUTRA Bethroge LOC PROJECT NO. 112 6020 9 BOI DATE BEGUN \$124110 DA FIELD GEOLOGIST & SOR	CATION 5, Le DR RING VA TE COMPLETED 8/29/10 DE	RILLER SUPM PREU, on Sly RILLING In stalled - OCTOB ETHOD 2009. This docu VELOPMENT implant constru ETHOD on in					
	ELEVATION TOP OF RISER:						
	Bendon, Le plug 0.2	Timplant, coment					
FLUSH MOUNT	TYPE OF PROTECTIVE CASING: FL	ush mount					
SURFACE CASING WITH LOCK	I.D. OF PROTECTIVE CASING: _/, "						
Warn 2001							
	DIAMETER OF HOLE: 2,25	1					
	TYPE OF RISER PIPE: PVC						
	RISER PIPE I.D.:						
	TYPE OF BACKFILL/SEAL: around Quartz to 0.2 60	d tubing; #15/lica					
	— ELEVATION/DEPTH TOP OF SEAL:						
	- TYPE OF SEAL: around tible 3/8" Bentende Hole	plug					
Yy" I. O. Poly Trabing	— ELEVATION/DEPTH TOP OF SAND	side coiny, 3 4.78/70C					
10 19 710 BING 11:	— ELEVATION/DEPTH TOP OF SCREEN	: 35,38 70C					
	TYPE OF SCREEN: PUC SLOT SIZE × LENGTH: 0,010	3/04 V2 1					
	TYPE OF SAND PACKOLOUND;						
	DIAMETER OF HOLE IN BEDROCK:	NA					
36.786clow TOC III	- ELEVATION / DEPTH BOTTOM OF S	CREEN: 37.38/70C					
	ELEVATION / DEPTH BOTTOM OF S ELEVATION/DEPTH BOTTOM OF HOL						
37.38 below toc, 151	BACKFILL MATERIAL BELOW SAND:						

WELL NO.: 51/PM-2007I

	Tetra Tech NUS, Inc. Geoprobe Implant Retrofit for soil Vapor Pressure Monder						
	PROJECT NO. 1126 CANA BELLINGE L PROJECT NO. 1126 CANA BELLINGE L DATE BEGUN 81241 (0	OCATION SILE BORING NA DATE COMPLETED <u>8/24/0</u>	DRILLER SUPA PLEVIOUSLY DRILLING INSTALLED Tankar METHOD 2009 This daily				
	FIELD GEOLOGIST F. Sok	DATUM	DEVELOPMENT Emplant constru METHOD only				
J INF		ELEVATION TOP OF RISER:					
ACAD: FORM_MWFM.dwg 6//26/9	FLUSH MOUNT—SURFACE CASING WITH LOCK	TYPE OF PROTECTIVE CASING: L.D. OF PROTECTIVE CASING: DIAMETER OF HOLE: TYPE OF RISER PIPE: RISER PIPE I.D.: 1 1/1	und tubing: #1 5ilica				
	Yy " ID Poly tubing	ELEVATION/DEPTH TOP OF SCR	Hote Plug Hote Plug				
	21.91 below TOC 6"Sto in 1055 Store 1 Scopicobe Insport 1 22,41 below TOC	SLOT SIZE × LENGTH: O.OO TYPE OF SAND PACK: CLOON LIAMETER OF HOLE IN BEDROO ELEVATION / DEPTH BOTTOM OF ELEVATION / DEPTH BOTTOM OF BACKFILL MATERIAL BELOW SA	Slot X2' Slot X2' Slot X2' Sk: <u>NA</u> OF SCREEN: <u>22.41'/ Toc</u> OF SAND: <u>22.41'/ Toc</u> HOLE: <u>22.41'/ Toc</u>				

WELL NO.: <u>SVPM-2007D</u>

Te	etra Tech NUS, Inc.	Geodrobe:	Indant Retrofit Sersail	Vapor Pressure Monito
PR PR DA FII	ROJECT <u>NWIRP Be</u> ROJECT NO. <u>112 601</u> ATE BEGUN <u>812 4</u>	Hpage LO 2019 BO 110 DA	CATION SIDE / RING 1/A TE COMPLETED 8/24/10 TUM	DRILLER SUM Previously DRILLING installed Januar METHOD 2009, This docu DEVELOPMENT implant const METHOD Only.
IN C	_		ELEVATION TOP OF RISER:	/
ACAD: FORM_MWFM.dwg 07/20/99	FLUSH MOUNT—SURFACE CASING WITH LOCK		TYPE OF SURFACE SEALD YOUR MENTONITE Plug OF TYPE OF PROTECTIVE CASING: I.D. OF PROTECTIVE CASING: DIAMETER OF HOLE: TYPE OF RISER PIPE: PVC	Elush mount
			RISER PIPE I.D.: /" TYPE OF BACKFILL/SEAL: OND OF SEAL OF SEA	
	V.16 750		ELEVATION/DEPTH TOP OF SAN	Dinside Casing:37.50/ TOC
	Poly fubling		TYPE OF SAND PACKAGOUNG	5/of X2'
	39.50 below TOC 4" Stainless Steels Geoprole Faylants 40.0 below TOCT		DIAMETER OF HOLE IN BEDROCI — ELEVATION / DEPTH BOTTOM O ELEVATION / DEPTH BOTTOM OF BACKFILL MATERIAL BELOW SAN	F SCREEN: 40.0 / TOC F SAND: 40.0 / TOC HOLE: 40.0 / TOC

APPENDIX B AIR SAMPLING LOG SHEETS

Page 1 of 1

Project Site Name: Project No.:	NV	VIRP Bethpa 112G02019	_	Sample ID No Sample Loca Sampled By:		BP51-AR003-55B3 Home # 3 RM5		
SAMPLING DATA:								
Date: 7/28/10 Time: /669 Method: 6L Same		Wind speed (Visual)	Wind Direction (estimated) ジェーシい	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other	
Summa Canister # Filter Type/Flow	3336 24 hr			Duplicate (if collected)		1:11:]	
	727 1604 7/28 1609	in Hg - 30 in Hg <i>-5</i>				in Hg in Hg		
He check	Start	Stop	Reading —					
Purge Data	Start	Stop 	Notes:					
Readings: BKG- Liters/minute 60m @ 3.8 26m @ 3.7 80m @ 4.3 Notes:	1.8ppn 240n1 (2	APU E-Meter HEPA Life Carbon Life	Reading MA	Kwh hours hours	SSD E-Meter Flow rate	Reading NA	Kwh cfm	
Notes: Substate location of * APUs removed of	placed adj	acent to f itly from	frmer locathome o	Hons SSB p n 7113110, :	55B2. 550 was 51	nut off	on 7/13/10, KLF	

Page 1 of 1

Project Site Name: Project No.:	N\	NWIRP Bethpage Sample ID No.: 112G02019 Sample Location: Sampled By:		BPS1-AR003-INDB-5 Home # 3 RMS			
SAMPLING DATA:							
Date: 7/28/10 Time: 1/22		Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other
Method: 62 Summe	(.						
Summa Canister # Filter Type/Flow	34 348 24hr	3		Duplicate (if collected)			
Start Time Vacuum End Time Vacuum		in Hg -31 in Hg -2.5				in Hg in Hg]
He check	Start	Stop	Reading				
Purge Data	Start	Stop	Notes:]	
Readings: Liters/minute @		APU E-Meter HEPA Life Carbon Life	Reading MA	Kwh hours hours	SSD E-Meter Flow rate	Reading NA	Kwh cfm
Notes:	a collact	الأمر منالح	do of bo	scoment inco	1 Ermer he	40 m 0 m	I complex
Indoor air sample & APUs removed	perman	ently fr	on home	on 7/13/	10. 550 u	ias Shut	off on 7/13/1

Project Site Name:	NI	WIRP Bethpa	age	Sample ID No	o.:		Page 1 AROO3 - INOL-	
Project No.:	**************************************	112G02019	1	_Sample Loca		Home # .	3	
				Sampled By:		RMS		
SAMPLING DATA:								
Date: 7/28/jo		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: ¼~25		(Visual)	(estimated)	(°F)	(in.)	(%)		
Method: 6 Samue								
Summa Canister #	1208	27_	1	Duplicate	94602		7/4/24 126	/ ~
Filter Type/Flow	24hr	30		(if collected)	24hr	<u> </u>	Used 1200 for blind	
	0.100		i	(22,			- bup tha	(م
Start Time Vacuum	数7 1615	in Hg -30	1		7/27 1615	in Hg -32	1 Vac Ti"	
End Time Vacuum		in Hg-4.5]		7/28 1626	in Hg -\9,5	5	
				=	,		. Red	
He check	Start	Stop	Reading]				
				<u></u>		7		
Purge Data	Start	Stop	Notes:					
				and the state of t	1. 600			
Readings:		<u>APU</u>	Reading		SSD	<u>Reading</u>		
Liters/minute		E-Meter		Kwh	E-Meter	NA	Kwh	
@		HEPA Life	NA	hours	Flow rate	JUH	cfm	
@		Carbon Life	/ ' '	hours				
Notes:								
Sample collected were collected *APUS were rea 7/13110. KLE	d in betw moved p	reen livin	5 room and	d diving roo	,m (stfloor) n (7/13/10, 5	Jere forme SSD Was	er INDL samples shut off a	es on

Project Site Name: Project No.: SAMPLING DATA:	N'	WIRP Bethp 112G02019	_	Sample ID N Sample Loca Sampled By	ation:	BPS1 - AROO3 - 010A 3 Home # 3 RMS			1 of 1
Date: 7/28/co Time: 1635 Method: 6L Summ	3	Wind speed (Visual) 0-Smph	Wind Direction (estimated) SE-SW (Milable direction)	Ambient temperature (°F) ~85°F	Barometric Pressure (in.)	Relative Humidity (%)		Other	
Summa Canister # Filter Type/Flow	16791 24hr			Duplicate (if collected)					
Start Time Vacuum End Time Vacuum	7/24 1628 7/28 1635	in Hg - 32 in Hg - 10.5				in Hg in Hg			
He check ————————————————————————————————————	Start Start —	Stop Stop	Reading — Notes:						
Readings: Liters/minute @ @ @		APU E-Meter HEPA Life Carbon Life	Reading NA	Kwh hours hours	SSD E-Meter Flow rate	Reading NA	Kwh cfm	7/28/10 738 NA	1638
Outdoor Air sample & APUS removed	collecteo perman	l from si ently fro	E corner o	of backyard e on 7/13/	110. 55p W	as shut	⊕ \$€	an 7112	3110. KLF

						_		ge 1	of 1
Project Site Name:	N	WIRP Bethp	age	Sample ID No	o.:	BPSI-ARC	3- ST	05	
Project No.:		112G02019)	_Sample Loca	tion:	Home # 3			
				Sampled By:		Virce			
SAMPLING DATA:									
Date: 8~2닉-18	3	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other		
Time: 1454		(Visual)	(estimated)	(°F)	(in.)	(%)			
Method: Sunna C.	ennister	NA -						\rightarrow	
			7						
Summa Canister #	57.39			Duplicate	NA				
Filter Type/Flow	30 mis	ute		(if collected)					
0((7:)/		1	1	_		-1:			
Start Time Vacuum	-30	in Hg	1412 hav			in Hg			
End Time Vacuum	- 4.5	in Hg	1454 hou	75	Ψ	in Hg			
He check	Start	Stop	Reading	7					
NA -	Start	Stop	Reading						
Purge Data	Start	Stop	Notes:			1			
NA		>							
						₫			
Readings:									
Liters/minute									

Notes:									
- Stack PID res	ding teng	= 0.0 fe	0.6 ppm	- prior to	Senfling				
- Meter reeding	-b 78	9 KU	• •	1	, J				
J									

Page 1 of 1 **Project Site Name: NWIRP Bethpage** Sample ID No.: BPSI-AROO4-STOS **Project No.:** 112G02019 Sample Location: Home # 4 Sampled By: Vince Shickory **SAMPLING DATA:** Wind Ambient Relative Barometric Date: 8-24-10 Wind speed Direction temperature Pressure Humidity Other Time: 1500 (°F) (Visual) (estimated) (%) (in.) Method: Summa Canister NA > Summa Canister # 33989 **Duplicate** Filter Type/Flow 30 minute (if collected) Start Time Vacuum 1420 hours -31 in Hg in Hg **End Time Vacuum** -5.0 in Hg 1500 hours lin Ha He check Start Stop Reading 1UA -Purge Data Start Stop Notes: NA Readings: Liters/minute Notes: Stack PIN readings range 0.0 ppn to 0.3 ppn prist to sampling

Project Site Name: Project No.:	N\	WIRP Bethpa 112G02019	-	Sample ID No Sample Locat Sampled By:	ation:	BPSI - AROC Home # 2	
SAMPLING DATA:						- VINCE JANCE	-9(H (NO) 30K
Date: 8-24-10 Time: Method: Somme C	enister	Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other
Summa Canister #	1566			Duplicate			
Filter Type/Flow	30 MIN	\&	1	(if collected)			
Start Time Vacuum End Time Vacuum		in Hg in Hg	1403 how	irs		in Hg in Hg	
He check	Start	Stop	Reading				
Purge Data	Start	Stop	——⇒ Notes:				12/26
Readings: Liters/minute Like @ @ Notes:							olator
- Stack PID re-	→ 729	ge from Kled	1.0 to 1.	8 ppm pris	or to sampli	~g	

Project Site Name: Project No.:	N'	112G02019 Sai		Sample Loca	ample ID No.: ample Location:		Page 1	
SAMPLING DATA:				Sampled By:		Vince Shu	Kera/Robs	30K
Date: 8-24-10 Time: 1544 Method: Sconna Co	nister	Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other	
Summa Canister # Filter Type/Flow	34260 30 Minu			Duplicate (if collected)	NA L			
Start Time Vacuum End Time Vacuum	- 31 - 6.5	in Hg in Hg	1511 hour	s s	1	in Hg in Hg		
He check ルA ———— Purge Data ルA ————	Start		Reading Notes:]		
Readings: Liters/minute NA @ Notes: - STack PID reading - Mater reading	nys tange 729	e from O. Kw	o to 1.8	ppm prior	to sampling			

Project Site Name: Project No.:		NWIRP Bethpage Sample ID No.: 112G02019 Sample Location:				Page 1 of BPSI-AROI3 - STO5		
i roject No.,		112002019)	_Sample Loca Sampled By:		Home # (3		
SAMPLING DATA:				Sampled by.		Vinze Shi	ckera/Rob.	Sek
Date: 8-24-10 Time: 1641 Method: Somma Co		Wind speed (Visual) NA ——	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other	
Summa Canister # Filter Type/Flow	9920 30 Min	,te		Duplicate (if collected)	9423 30 minte			
Start Time Vacuum End Time Vacuum	-31 -75	in Hg in Hg	1556 ho	<u> 273</u>	-31 -4,5	in Hg in Hg	1556 hours 1641	
He check NA Purge Data NA NA	Start Start		Reading Notes:					
Readings: Liters/minute NA @ Q Notes:				·	→ BP51	Dupol-2	10100824	
-Stack PID read	ing range	from 0.i	s to 0.6	ppm prior t	te sampling			

Project Site Name: Project No.:	N	WIRP Bethpa 112G02019	_	Sample ID No.: Sample Location: Sampled By: Page 1 8/51 - ARO14 - 5705 Home # 14 RW6/VAS			
SAMPLING DATA:						1.0.00/0343	
Date: 8/24/10 Time: 1647 Method: Junua 6L	contister	Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature ([°] F)	Barometric Pressure (in.)	Relative Humidity (%)	Other
Summa Canister # Filter Type/Flow	12013 Bomin		!	Duplicate (if collected)			
Start Time Vacuum End Time Vacuum	-31 -3	in Hg 1607 in Hg 1644				in Hg in Hg	
He check	Start	Stop	Reading				
Purge Data	Start	Stop	Notes:				
Readings: Liters/minute@ @ Notes: PTD Reading 0,6	opp palo	to Start					

Project Site Name: Project No.:	N'	WIRP Bethpa 112G02019	•	Sample ID No.: Sample Location: Sampled By:		BPSI-AROOZ-ODAY Home # 2 Visice Shickory / Rob Sol		
SAMPLING DATA:	,							
Date: 9-24-10 Time: 1814		Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other	
Method: Sunna C	enster	~ 10 to 15 noh	N-VE	~ 75°F				
Summa Canister # Filter Type/Flow	9916 8 how			Duplicate (if collected)				
Start Time Vacuum End Time Vacuum	-28.5 -11.0	in Hg in Hg	1814 hour	<u>'5</u> '5		in Hg in Hg		
He check	Start	Stop	Reading					
Purge Data	Start	Stop	Notes:					
Readings: Liters/minute NA @ O Notes: Initial PIA resorts Sample locate	lings D. de neer	o ppm. A NE corne	mb, et	k yard				

							Page 1	l of 1
Project Site Name:	N	IWIRP Bethp	age	Sample ID No).:	BPSI - SUI	PM-2002D-1	68251C
Project No.:		112G02019)	_Sample Loca	tion:	Home # N-A		
				Sampled By:		Vince Stuckory / Rob Sok		
SAMPLING DATA:								
Data: 0.26 1		1,100	Wind	Ambient	Barometric	Relative		
Date: 8-25-10	·	Wind speed		temperature	Pressure	Humidity	Other	
Time: 1458	•	(Visual)	(estimated)	(F)	(in.)	(%)		
Method: Summe Ca	nnister	NA ~					`	
Summa Canister #	J 7 / 1		1	Dunlingto				
Filter Type/Flow	5761		•	Duplicate	NA			
riitei Type/Flow	30 Min	<u> ۱۲۳۰</u>		(if collected)				
Start Time Vacuum	71	in Hg	1418 hg					
End Time Vacuum	- 31		1458	3,3		in Hg		
End fille vacuum	-4,5	in Hg		F . 1		in Hg		
He check	Start	Stop	Initial Booding	Final				
THE CHECK	1400	1415	Reading	Reading				
Purge Data	Start	Stop	75ppm	75 ppn 75 ppn 20	and the t	7 D Covert	reform of He	lion in
i dige Data	1400	***	Notes, por	SE PERE NO 20	o mi/mi/	Test 16.	4-1 5 10	10 000
	1100	1415	<u> </u>			orgres	ember > 10 ter to a 53%	2 11
Readings:).	, , , , , , , , , , , , , , , , , , , ,	ास्थायः
Liters/minute								
5 min @1000 ML	lacin							
10 min @ 2000 MI								
15 min @ 3000 MI								
Notes:								
- Helindetecte	rused	-> Die	lectric 6	model mad	2002)		M	
- Ponpused -					-/			
- Flow gauge -	Rica	1-1-	75) A	e la non	Flor -	L- CIMI	4 5M1 to.	. 1
1 100 92550 -	-> 010S	-411 × C31	(D) - 1)	C THE PHIM	rery ; low my	are () ma		JZ

							Page 1 of 1
Project Site Name:	N	WIRP Bethp	age	Sample ID No	o.:	BPSI- SUP	M-2003I-0826
Project No.:		112G02019)	Sample Loca	tion:	Home # ∧	14
				Sampled By:			.A-S
SAMPLING DATA:	1 11 1111111111					, , , , , , , , , , , , , , , , , , , ,	
Date: 8/24/10		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: [50]		(Visual)	(estimated)	(°F)	(in.)	(%)	
Method: Summe	4 6L	MA -					23
Summa Canister #	5625			Duplicate			
Filter Type/Flow	30 m	11/4		(if collected)			
			•				
Start Time Vacuum	-31	in Hg	1424 has	<u>us</u>		in Hg	
End Time Vacuum	-4.5	in Hg	1501 ho	ur5		in Hg	
				•			
He check	Start	Stop	Reading				
NA -						_	
Purge Data	Start	Stop	Notes:				
NA				<u> </u>			
. "							
Readings:							
Liters/minute							
@							
Notes:							

Project Site Name: Project No.:	roject No.: 112G02019		•	Sample ID No Sample Loca Sampled By:		BPSI-SUPM-2002I-082510 Home # NA Vince ShickerA / Rob Sok		
SAMPLING DATA:								
Date: 8-25-/0 Time: 1528		Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other	
Method: Somma C	emister	NA						
Summa Canister # Filter Type/Flow	34458 30 Mine			Duplicate (if collected)	A,A			
Start Time Vacuum End Time Vacuum	- 29.5 - 4.5	in Hg in Hg	1447 hos 1528 hos Tritial	<i>r</i> s	V	in Hg in Hg		
He check Purge Data	Start 1430 Start 1430	Stop 1445 Stop 1445	Reading	Reading 0.0 pm	o ml/min	* concentis Test Cha	tion of Helian in ber -> 100,000 ter to a 53% He	
Readings: Liters/minute <u>5 min</u> @ <u>1000 ML</u> <u>10 min</u> @ <u>2000 ML</u> <u>15 min</u> @ <u>2000 ML</u> Notes:						J.	33 % He	

Project Site Name: Project No.:	112G02019		•		ct No.: 112G02019 Sample Location: Sampled By:		Sample Location:		BPSI-SVPM-2002\$-082510 Home # NA Virice Shickers / Rob Sok		
SAMPLING DATA:											
Date: 8-25-10 Time: 1625 Method: Sunna Ce	nister	Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other				
Summa Canister # Filter Type/Flow	2530° 30 min	6		Duplicate (if collected)	NA						
Start Time Vacuum End Time Vacuum	-31	in Hg in Hg	1535 ho 1625 ho Initial	ous Final	—	in Hg in Hg					
He check Purge Data	Start 1518 Start 1518	Stop 15.3.3 Stop 15.3.3	Reading	Reading	oml/min	Concertra	tion in Helium Tes				
Readings: Liters/minute Smin @ 1000 ML 10 Min @ 2000 ML 15 Min @ 3000 ML Notes:			÷			or great	→ 100,000 ppm er to ~ 53% He				

Project Site Name: Project No.:	Name: NWIRP Bethpage Sample ID No.: 112G02019 Sample Location: Sampled By:		ation:	Page 1 BPSI-SVPM-2003 II-083 Home # NA Vinica Shickord / Rob Si				
SAMPLING DATA:				<u> </u>				
Date: 8-25-10 Time: 1860		Wind speed (Visual)	Wind Direction (estimated)	Ambient temperature (°F)	Barometric Pressure (in.)	Relative Humidity (%)	Other	
Method: Sunna Ca	nister	NA -						
Summa Canister # Filter Type/Flow	34349 30 minu]	Duplicate (if collected)	Au			
Start Time Vacuum End Time Vacuum	-30	in Hg in Hg	1726 hours 1800 Initial	_		in Hg in Hg		
He check	Start 1710	Stop 1725	Reading 50 ppm	Reading C. O ppm				
Purge Data	Start 1710			gerater 200	ML/min	December → 100,000 p		
Readings: Liters/minute 5 Min @ 1000 ML 10 Min @ 2000 ML 15 Min @ 3000 ML Notes:						To 537	3	

Page 1 of 1

NWIRP Bethpage

Sample ID No.:

BPS1-SVPM-ODA-082510

Project No.:

112G02019

Sample Location:

Home # NA

Sampled By:

Vince ShickOFA / Rob Sok

Date: 8-25-10	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1803	(Visual)	(estimated)	([°] F)	(in.)	(%)	
Method: Some carnister	~ 5 ~ ph	west	* 75°F			

Summa Canister #	20944
Filter Type/Flow	8 how

Duplicate (if collected)

٨	۶ <u>۸</u>		
		•	
i			

Start Time Vacuum	-31	in Hg	1333 hours
End Time Vacuum	-15	in Hg	1803

	in Hg
\	in Hg

He check	Start	Stop	Reading	
NA -			>	
Purge Data	Start	Stop	Notes:	
NA		\rightarrow		

Readings:

Liters/minute

NA @ ____

Notes:

- Outdoor sir sample applicable to the Sellowing locations: SUPM-2002I, SUPM 2002S, SUPM-20030 and SUPM-004-082510 (All samples collected on 8/25/10). KIS

							Page 1	of 1
Project Site Name:	N\	NIRP Bethpa	age	Sample ID No		BPS1-SVPM-2004I. 082610		
Project No.:	Project No.:		112G02019		Sample Location:		NA	
				Sampled By:		Rob Sol	Viace Shick	OTA
SAMPLING DATA:								
Date: 8-26-10		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 0918		(Visual)	(estimated)	(°F)	(in.)	(%)		
Method: Sunna Ca	ennister	NA						
		Non-mari will be	· · · · · · · · · · · · · · · · · · ·	***************************************				
Summa Canister#	12021		T	Duplicate	33800		Dupaz	8
Filter Type/Flow	30 min	ite		(if collected)	30 Minste	_		
			•				4	
Start Time Vacuum	- 28.0	in Hg	0344 hou	<u>~s</u>	- 31.0	in Hg	0844 hours	
End Time Vacuum	-3.5	in Hg	७१।४		- 31.0 - 5.0	in Hg		enple Time
		<u></u>	Initial	Final			1200 hour S. For Chain-of	cistedy
He check	Start	Stop	Reading	Resding				,
	0825	0842	75 ppm	O ppm		\sim		
Purge Data	Start	Stop		w blen Zo	22 Mel /Min	1 (x) Conce	attation of Heli	ion in
	0825	0842		_		Test	Chamber -> 10	0 000 ppm
	<u> </u>						53% Helion	
Readings:						70 2	o re thenon	
Liters/minute								
5 min @ 1000 ML								
min @ 2000 ML								
5 min @ 3000 ML								
Notes:								
								ŀ

Page 1 of 1 **Project Site Name: NWIRP Bethpage** Sample ID No.: BPSI-SVPM-20041-082610 Home # NA Sample Location: Project No.: 112G02019 Sampled By: Rob Sok/Vince Shickory SAMPLING DATA: Wind Ambient Barometric Relative 8-26-10 Date: temperature Wind speed Direction Pressure Humidity Other 0920 (°F) Time: (estimated) (%) (Visual) (in.) Method: Summa NA Summa Canister # **Duplicate** 33572 NA Filter Type/Flow 30 minute (if collected) 0829 hours Start Time Vacuum in Hg in Hg - 30.0 **End Time Vacuum** -4.5 0920 in Hg in Hg Intel Stop He check Start Reading 0813 So pon © Concertration of Helium in Test Chamber → 100,000 ppn To 53% Helium Notes: Flow tale - 200 ML/min Stop Purge Data Start 0813 Readings: Liters/minute 5 Min @ 1000 ML 10 Min @ 2000 ML 15 Min @ 3000 ML Notes:

							Page	
Project Site Name:	N,	WIRP Bethpa	_	Sample ID No			M-20071-0	82610
Project No.:		112G02019		Sample Locat	tion:	Home #		
				Sampled By:		Rob Sol	K / VINEZ Shi	Kora
SAMPLING DATA:								
			Wind	Ambient	Barometric	Relative		
Date: 8-26-10		Wind speed	Direction	temperature	Pressure	Humidity	Other	
Time: 1040		(Visual)	(estimated)	([°] F)	(in.)	(%)	***************************************	
Method: Summa ez	mister	NA -					<u>_</u>	
Summa Canister #	33915		1	Duplicate	NA			
Filter Type/Flow	30 Minu	۱ - ۱		(if collected)	1071			
This Typon low	100 /M 1/10	<u> </u>		(ii concolod)				
Start Time Vacuum	-31.0	in Hg	1003 how	<u>(s</u>		in Hg		
End Time Vacuum	- 3.5	in Hg	1040 how		4	in Hg		
			Initial	Final				
He check	Start	Stop	Reading	Reading				
	0946	1001	O. Oppa	0.0 ppm		- 🕟	1 1. E 1	1.** *
Purge Data	Start	Stop	Notes: Plou	otalen 200.	ML/min	Cones	tietien of Its	21/02 11
	0946	1001				Test	Chamber > 10	0000 6
						_ T2 5	testion of He Chenber > 10 50% Helium	
Readings:							_	
Liters/minute								
5 min @ 1000 ML								
10 min @ 2000 ML								
15 MIN @ 3000 ML								
Notes:								
							,	,

Project Site Name: Project No.:	N	WIRP Bethpa 112G02019	•	Sample ID No Sample Loca	ition:	Home #	VPM-12\$-08	
Dec				Sampled By:		Virce	Shidora / Ro	<u>6 Sok</u>
SAMPLING DATA:								
Date: 8-26-10		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 238		(Visual)	(estimated)	(°F)	(in.)	(%)		
Method: Sunma ce	mister	PA —						
							DOR 93.	
Summa Canister #	12679		1	Duplicate	14006] ~~ \$ \$ 7	
Filter Type/Flow	30 MI	note]	(if collected)	30 Minut] ***	
			• ,				· · · · · ·	
Start Time Vacuum	-31.0	in Hg	1159 hou	<u> </u>	- 30.0	in Hg	1159 hours	
End Time Vacuum	- 3.5	in Hg	1238 how	r5	-5.0	in Hg	1738 hows	
				-			1159 hours 1738 hours = @ 1600 hours = on chain of a	earded
He check	Start	Stop	Reading			ţ	As about for	eteste
NA			\longrightarrow			_	ت ده ۱۰۰۱ تا تا تا	Js/
Purge Data	Start	 	Notes: Flo	ow role ~ 2c	om/min	1		
	1143	1158						
Readings: Liters/minute 5 min @ lose mL 10 min @ 2000 ML 15 min @ 3000 ML Notes:					٠.			

							Page 1 of
Project Site Name:	N,	WIRP Bethpa	age	Sample ID No.	ر .:	BPSI-SUPM-	· -
Project No.:		112G02019	•	Sample Locati		Home # 1	
				Sampled By:		***************************************	CKOSA/Rob Sok
SAMPLING DATA:		·					
			Wind	Ambient	Barometric	Relative	
Date: 8-26-10		Wind speed	1 1	temperature	Pressure	Humidity	Other
Time: 1257 Method: Some ca	-1	(Visual)	(estimated)	(°F)	(in.)	(%)	
Metnoa: Sonne cz	MISTO	NA -					
Cariatan #	1 -2 -2 -2/		1	P Unata			
Summa Canister #	33886		_	Duplicate (if collected)	NA .		
Filter Type/Flow	30 Minu	<u>du</u>	1	(if collected)			
r			ا م. ٦٠	•			
Start Time Vacuum		in Hg	1219 hour			in Hg	
End Time Vacuum	- 50	in Hg	1257 hour	<i>5</i> ,		in Hg	
				-			
He check	Start	Stop	Reading	1			
NA -			<u> </u>	1		—	
Purge Data	Start	• •	Notes: >6	bwister 200	OML /min	1	
	1203	1218					
						_	
Readings:							
Liters/minute							
5 min @ 1000 ML							
DMIN @ 2000 ML							
15 Min @ 3000ML							
Notes:							

Page 1 of 1

Project Site Name: Project No.:		WIRP Bethpa 112G02019	•	Sample ID No Sample Locat Sampled By:	tion:	Home # NA	
SAMPLING DATA:							
Date: 8-26-10		Wind speed	1	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1510		(Visual)	(estimated)	(°F)	(in.)	(%)	
Method: عمد مد	mister	- SAPL	west	175°F			
		-	1		F		
Summa Canister #	5727		4	Duplicate	NA		
Filter Type/Flow	8 hour		1	(if collected)			
		<u> </u>	1 _ ~ . ~	y			
Start Time Vacuum		in Hg	0818			in Hg	
End Time Vacuum	- 10.5	in Hg	15/0			in Hg	
				- 5			
	Start	Stop	Reading	_[
NA —						_	
Purge Data	Start	Stop	Notes:]	
NA -	1	 		W-W-		_	
Readings:							
Liters/minute							
NA @							
@ <u>\</u>							
Notes:				collected or	,		

							Page 1 of 1
Project Site Name: Project No.:	N'	WIRP Bethp: 112G02019	•	Sample ID No Sample Loca		BPsi-SVPM Home # 1	- 2007I-082610 A
•				Sampled By:		Reb Sck	1 Vinee Shickory
SAMPLING DATA:							
Date: 8-26-10		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time:		(Visual)	(estimated)	(°F)	(in.)	(%)	
Method: Sonne C	ennister	PA -					
			·				
Summa Canister #	5602			Duplicate	NA		
Filter Type/Flow	30 Minu			(if collected)	1		
Start Time Vacuum		in Hg				in Hg	
End Time Vacuum		in Hg			7	in Hg	$\mathcal{S}_{\mathbf{v}}$
	•	·	Initial	Final _		-	
He check	Start	Stop	Reading	Reading			
	0942	-	2650 PPM				
Purge Data	Start	Stop		wrate ~ 200	OML/Min	Concertis	ution of Helium 1
	6942				•	Test ch	ember -> los oss 1
						- TB	ember -> 100,000 f
Readings:						1- 00	70 Menone
Liters/minute							
5 min @ 1000 14L							
10 min @ 2000 ML							
15 min @ 3000 mc Notes:							
No sample - ca	nnot pur	ge line	Cair will	not pull 4	from tubin	9.) (1101) na	eds repair. Kur
-	· •	Ü	55.11	, , ,		J Well he	eus igaii. Mu

APPENDIX C CHAIN OF CUSTODY RECORDS

TOXICS LTD. CHAIN-OF-CUSTODY RECORD

Sample Transportation NoticeRelinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630-4719

Page ___of__

Project Manager Daye Brayack		Project Info:	t Info:		Turn Around	Lab Use Only	
Collected by: (Print and Sim) Collect		(l me:	Pressurized by:	ed by:
A STATE OF THE STA	300	F.O. #			Normal	Date:	
Company 1819 181 No. 18 No. 1819 1819 1819 1819 1819 1819 1819 181	C) K State 1/4 Zio 13503		Project # 112602019		Rush	Pressuriza	Pressurization Gas:
			Name NWIK	Project Name Niwske Beth page	toky ims	N_2	He
		Date	Time		Canis	Canister Pressure/Vacuum	re/Vacuum
Lab I.D. (Location)	Can #	of Collection of Collection	of Collection	Analyses Requested	d Initial	Sange	Receipt Final
DIM 881- AK03-5583	33323	2/28/10	6091	70-15	-30	->	
024 8P51- ACOG - INDB-5	34348	ol/se/L	1633	76-15	-31	-4.5	
029 8PS1-ARDD3-INDL-5	13081	4/28/10	1625	70-15	3	رة الأ	
04A RPSI-ARGO 3-00A3	16791	01/88/tc	1635	70-15	-30	-10.5	
059 RPS1 - DUP 81	94602	4/38/10	1200	21-02	-32	45.5	
	* Pease	mote vacu	um recol	ing on aludicate			
	A NO	check 1	ion for e	and check can for enoughvolume			
	A Outck	7-day	TAT				
	1			4			
Relinquished by: (signature) Date/Time Re	Received by: (signature)	ure) Dana/Tim	B.	AR Please call Ab Sok regarding	folk solv	لکی دیجا ۲	(1) (2)
Relinquished by: (signature) Date/Time Re	Received by: (signature)	ure) Date/Time	<u>}</u>	130/10 915 Duplicate sample and volume	50mple	ond voll	الم
Relinquished by: (signature) Date/Time Re	Received by: (signature)	ure) Date/Time			•		
Shipper Name Air Bill #	<u>L</u>	Temp (°C)	Condition	Custody Seals Intact?	s Intact?	Work Order #	er#
Use (CA EX		NA VA		(Yes) No	None		1007700
							Form 1003 rov 11

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotiine (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630-4719

ŏ

Page_

Project Manager Dave Brayack		Project Info:	A BENEFIT OF THE PROPERTY OF T	2	Turn Around	Lab Use Only Pressurized by:	by:
obest Sak		# O d		X	M Normal	Date:	
Company Terror Leck Email Johnson	Email Job, Scit C tetratech, com		Project # 112602019		☐ Rush	Pressurization Gas:	ion Gas:
	die VV		Project Name_C76-WE06	1606	specify	N_2	θŢ
and the second of the second o		Date	I we		Canist	Canister Pressure/Vacuum	/Vacuum
Lab I.D. (Location)	Can #	ion of C		Analyses Requested	Initial	Final Receipt	eipt Final
OIA . RP51-AR003-5705	5739	H) 01/he/8	T 7.541	下っちるかれるも	-30	2,7	
02A . SPS1 - A ROBY - 5TOS	33889	8/24/10 15	1500		12	7	
03A 8151-ARONA-5705	34260	8/24/10 15	1544		-31	5.9-	
104 - 8052 - ARBIS - 5-TOS	9920	8/24/16 16	1641		-31	-7.5	
	13013	31/16/16	1617		31	~	
OCA 08951 - ARBBA - 00A4	9166	1 01/40/8	1814		.38.5	Z	
070 18651 - DUP OL - 2010 0824	9423	8/34/10 A.	9400		-31 -45	5%-	
ONA 18951-5UPM-200240-083510	5761	8/25/10 14	1458		-31 -4.5	-4,5	
018-08251-5VPM-20021-082510	34458	34458 8/35/10 14	447528		-29.5 -4.5	4.5	
018 18951 - SLOW - 20025 - 082510	25303	25303 8/25/10 16	1625	>	-31	-31 -4.5	
Relinquished by: (signarge) Date/Time Rec	ceived by: (signature)	ture) NDate/Time	A 28	Notes: Please use site specific	use off	なながら	3
	Received by: (signature)	ture) Date/The	136				.
Relinquished by: (signature) Date/Time Re	Received by: (signature)	ture) Date/Time					
					and the state of t		

Form 1293 rev.11

008666

None

ĝ

Yes

Work Order #

Custody Seals Intact?

Condition

Temp (°C)

Air Bill#

Shipper Name

Use omi

Lab

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630-4719 $\mathcal{C}_{\mathcal{S}}$

ਰੱ

Page

Project Collecte Compan Address Phone

Project Manager Dave Brayack		Project Info:	info:		Turn Around Time:	Lab Use Only Pressurize	Lab Use Only Pressurized by:	
Collected by: (Print and Sign) Report Sol		P.O.#			Normal Normal	Date:		
Company Compan	di Zi Z	Project	Project # 112602019	019	☐ Rush	Pressur	Pressurization Gas:	13.
Address Ora		Project I	Name CTD	Project Name CTD - WEO6	specify	_	N ₂ He	
		Date	E E		Canis	ter Press	Canister Pressure/Vacuum	E
Lab I.D. Field Sample I.D. (Location)	Can *	of Collection of Collection	of Collection	Analyses Requested	ted Initial	Final	Receipt F	Final (psi)
111 11/05/1-500m-20620-082510	34349	8/25/10	0081	70-15	-30	7		
17 8851 - NOW - 00 8 2510	20944	8/25/10	5 281	٠	-31	15		
019 BO - 24000-2004 2- 1282610	12021		8160		-28 -3,5	-3,5		
	33572		0930		-30	-4.5		
		33800 8/26/10	1200		-31	Ÿ		
		33915 8/36/10	0201		-31	-3.5		
170 RK1-SUPM-125-082610		12679 8/26/10	1238		-31 -3,5	-3,5		
	33886	33886 8/36/10	1327		-3(5		
		5635 8/36/10	1051		-31	4,5		
		14006 8/26/10 1600	009/	>	-30 -5	7		
Relinquished by: (signature) Date/Time Record Recor	seived by: (signa	seived by: (signature) Date/Time	" AR 8/21/	19710 compound list and detection	ase use s	to Solar	がおれ	,
Relinquished by: (signature) Date/Time Rec	beived by: (signature)	ture) Date Time	•	大型 516	· · · · ·		ļ	
Relinquished by: (signature) Date/Time Rec	seived by: (signature)	tture) Date/Time	Φ					

Form 1293 rev.11

Custody Seals Intact?

Condition

Temp (°C)

Air Bill #

Name

Shipper

Only Use

None

2

Yes

TOXICS LTD. CHAIN-OF-CUSTODY RECORD

Sample Transportation NoticeRelinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 Page 3 of 3 FOLSOM, CA 95630-4719

) ()		Collection, marking, or or pping of the property of the proper		Turn Around	Lab Use Only	Shify
Project Manager Wave Dayack	M	Project Into:	i no:		i e	10381	Pressurized by:
Collected by: (Print and Sign) Lobel Sol		P.O. #			X Normal	Date:	
Email		Project	Project # 112602019	9019	☐ Rush	Pressu	Pressurization Gas:
DA IV LAN COLOR	ale —— 2lp	Project	Project Name C78 - WEOL	-WE06	specify		N ₂ He
(A)		Date	Time		Cani	ster Pres	Canister Pressure/Vacuum
Lab I.D. Field Sample I.D. (Location)	Can #	of Collection of Collection	of Collection	Analyses Requested	sted Initial	Final	Receipt Final
8PSI-5UPM-00A-083610	5727	01/10/8	1510	10-15	-29	-29 -10.5	
			1				
	/						
				A			
				9			
Relinquished by (signature) Date/Time ROO Re	Received by: (signature)	ture) Date/Time	The Market	Notes: p	Notes: please use site specification compound list and defection limits	3200	ectiv
Relinquished by: (signature) Date/Time Re	Received by: (signature)	iture) Date/Time) eu	52			
Shipper Name Air Bill #		Temp (°C)	Condition		Custody Seals Intact?	Work (Work Order # 6 6 6
							Form 1293 rev.11

APPENDIX D DATA ANALYTICAL REPORTS

8/23/2010 Mr. David Brayack Tetra Tech Twin Oaks I, Suite 309 5700 Lake Wright Drive Norfolk VA 23502

Project Name: NWIRP Bethpage

Project #: 112G02019 Workorder #: 1007700B

Dear Mr. David Brayack

The following report includes the data for the above referenced project for sample(s) received on 7/30/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1007700B

Work Order Summary

CLIENT: Mr. David Brayack BILL TO: Accounts Payable/Pittsburg

Tetra Tech

Tetra Tech EC, Inc. Twin Oaks I, Suite 309 Foster Plaza 7 5700 Lake Wright Drive 661 Anderson Drive Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: P.O. # (757) 461-3824

FAX: (757) 461-4148 PROJECT # 112G02019 NWIRP Bethpage

DATE RECEIVED: 07/30/2010 **CONTACT:** Ausha Scott **DATE COMPLETED:** 08/20/2010

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPS1-AR003-SSB3	Modified TO-15	5.0 "Hg	5 psi
02A	BPS1-AR003-INDB-5	Modified TO-15	0.6 "Hg	5 psi
03A	BPS1-AR003-INDL-5	Modified TO-15	5.0 "Hg	5 psi
04A	BPS1-AR003-ODA3	Modified TO-15	11.0 "Hg	5 psi
05A	BPS1-DUP01	Modified TO-15	17.2 "Hg	5 psi
06A	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

08/23/10 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-15 Tetra Tech Workorder# 1007700B

Five 6 Liter Summa Canister (100% Certified) samples were received on July 30, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	+- 30% RSD with 2 compounds allowed out to < 40% RSD	30% RSD with 4 compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	= 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A year was not provided by the field sampler.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.

- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: BPS1-AR003-SSB3

Lab ID#: 1007700B-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.080	0.43	0.44	2.3
Trichloroethene	0.080	2.7	0.43	14
Tetrachloroethene	0.080	0.14	0.55	0.96
cis-1,2-Dichloroethene	0.16	0.0061 J	0.64	0.024 J
1,2-Dichloroethane	0.16	0.34	0.65	1.4

Client Sample ID: BPS1-AR003-INDB-5

Lab ID#: 1007700B-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.068	0.34	0.37	1.9
Trichloroethene	0.068	0.050 J	0.37	0.27 J
Tetrachloroethene	0.068	0.040 J	0.46	0.28 J
1,2-Dichloroethane	0.14	0.70	0.55	2.8

Client Sample ID: BPS1-AR003-INDL-5

Lab ID#: 1007700B-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.080	0.60	0.44	3.3	
Trichloroethene	0.080	0.030 J	0.43	0.16 J	
Tetrachloroethene	0.080	0.042 J	0.55	0.28 J	
1,2-Dichloroethane	0.16	0.41	0.65	1.6	

Client Sample ID: BPS1-AR003-ODA3

Lab ID#: 1007700B-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.11	0.013 J	0.58	0.070 J
Trichloroethene	0.11	0.040 J	0.57	0.22 J
Tetrachloroethene	0.11	0.023 J	0.72	0.16 J

Client Sample ID: BPS1-AR003-ODA3

Lab ID#: 1007700B-04A

1,2-Dichloroethane 0.21 0.068 J 0.86 0.27 J

Client Sample ID: BPS1-DUP01

Lab ID#: 1007700B-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.16	0.53	0.86	2.9
Trichloroethene	0.16	0.028 J	0.84	0.15 J
Tetrachloroethene	0.16	0.041 J	1.1	0.28 J
1,2-Dichloroethane	0.31	0.37	1.3	1.5

Client Sample ID: BPS1-AR003-SSB3 Lab ID#: 1007700B-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c081919	Date of Collection: 7/28/10 4:09:00 PM
Dil. Factor:	1.61	Date of Analysis: 8/20/10 09:16 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.080	0.43	0.44	2.3
Trichloroethene	0.080	2.7	0.43	14
Tetrachloroethene	0.080	0.14	0.55	0.96
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
cis-1,2-Dichloroethene	0.16	0.0061 J	0.64	0.024 J
1,2-Dichloroethane	0.16	0.34	0.65	1.4
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	107	70-130
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	110	70-130

Client Sample ID: BPS1-AR003-INDB-5 Lab ID#: 1007700B-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c081920	Date of Collection: 7/28/10 4:22:00 PM
Dil. Factor:	1.37	Date of Analysis: 8/20/10 09:56 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.068	0.34	0.37	1.9
Trichloroethene	0.068	0.050 J	0.37	0.27 J
Tetrachloroethene	0.068	0.040 J	0.46	0.28 J
Vinyl Chloride	0.14	Not Detected	0.35	Not Detected
1,1-Dichloroethene	0.14	Not Detected	0.54	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.55	Not Detected
cis-1,2-Dichloroethene	0.14	Not Detected	0.54	Not Detected
1,2-Dichloroethane	0.14	0.70	0.55	2.8
trans-1,2-Dichloroethene	0.14	Not Detected	0.54	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	95	70-130
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	97	70-130

Client Sample ID: BPS1-AR003-INDL-5 Lab ID#: 1007700B-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c081921	Date of Collection: 7/28/10 4:25:00 PM
Dil. Factor:	1.61	Date of Analysis: 8/20/10 10:39 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.080	0.60	0.44	3.3
Trichloroethene	0.080	0.030 J	0.43	0.16 J
Tetrachloroethene	0.080	0.042 J	0.55	0.28 J
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,2-Dichloroethane	0.16	0.41	0.65	1.6
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	94	70-130
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	100	70-130

Client Sample ID: BPS1-AR003-ODA3 Lab ID#: 1007700B-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c081922	Date of Collection: 7/28/10 4:35:00 PM
Dil. Factor:	2.12	Date of Analysis: 8/20/10 11:19 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.11	0.013 J	0.58	0.070 J
Trichloroethene	0.11	0.040 J	0.57	0.22 J
Tetrachloroethene	0.11	0.023 J	0.72	0.16 J
Vinyl Chloride	0.21	Not Detected	0.54	Not Detected
1,1-Dichloroethene	0.21	Not Detected	0.84	Not Detected
1,1-Dichloroethane	0.21	Not Detected	0.86	Not Detected
cis-1,2-Dichloroethene	0.21	Not Detected	0.84	Not Detected
1,2-Dichloroethane	0.21	0.068 J	0.86	0.27 J
trans-1,2-Dichloroethene	0.21	Not Detected	0.84	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	89	70-130
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	94	70-130

Client Sample ID: BPS1-DUP01 Lab ID#: 1007700B-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c081923	Date of Collection: 7/28/10 12:00:00 PM
Dil. Factor:	3.14	Date of Analysis: 8/20/10 12:01 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
<u> </u>				
1,1,1-Trichloroethane	0.16	0.53	0.86	2.9
Trichloroethene	0.16	0.028 J	0.84	0.15 J
Tetrachloroethene	0.16	0.041 J	1.1	0.28 J
Vinyl Chloride	0.31	Not Detected	0.80	Not Detected
1,1-Dichloroethene	0.31	Not Detected	1.2	Not Detected
1,1-Dichloroethane	0.31	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.31	Not Detected	1.2	Not Detected
1,2-Dichloroethane	0.31	0.37	1.3	1.5
trans-1,2-Dichloroethene	0.31	Not Detected	1.2	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	87	70-130
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	99	70-130

Client Sample ID: Lab Blank Lab ID#: 1007700B-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c081906a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/19/10 10:23 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.050	Not Detected	0.27	Not Detected
Trichloroethene	0.050	Not Detected	0.27	Not Detected
Tetrachloroethene	0.050	Not Detected	0.34	Not Detected
Vinyl Chloride	0.10	Not Detected	0.26	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1-Dichloroethane	0.10	Not Detected	0.40	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,2-Dichloroethane	0.10	Not Detected	0.40	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	89	70-130
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	95	70-130

Client Sample ID: CCV Lab ID#: 1007700B-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c081902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/19/10 07:08 PM

Compound	%Recovery
1,1,1-Trichloroethane	90
Trichloroethene	91
Tetrachloroethene	89
Vinyl Chloride	84
1,1-Dichloroethene	105
1,1-Dichloroethane	91
cis-1,2-Dichloroethene	90
1,2-Dichloroethane	88
trans-1,2-Dichloroethene	92

Surrogates	%Recovery	Method Limits
	•	
4-Bromofluorobenzene	100	70-130
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	103	70-130

Client Sample ID: LCS Lab ID#: 1007700B-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c081903 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/19/10 08:17 PM

Compound	%Recovery
1,1,1-Trichloroethane	83
Trichloroethene	84
Tetrachloroethene	84
Vinyl Chloride	87
1,1-Dichloroethene	82
1,1-Dichloroethane	80
cis-1,2-Dichloroethene	80
1,2-Dichloroethane	76
trans-1,2-Dichloroethene	84

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	100	70-130
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	102	70-130

9/9/2010 Mr. David Brayack Tetra Tech Twin Oaks I, Suite 309 5700 Lake Wright Drive Norfolk VA 23502

Project Name: CTO-WE06 Project #: 112G02019 Workorder #: 1008666A

Dear Mr. David Brayack

The following report includes the data for the above referenced project for sample(s) received on 8/27/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

DATE COMPLETED:

WORK ORDER #: 1008666A

Work Order Summary

CLIENT: Mr. David Brayack BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309
5700 Lake Wright Drive
Foster Plaza 7
661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: (757) 461-3824 **P.O.** #

09/09/2010

FAX: (757) 461-4148 **PROJECT** # 112G02019 CTO-WE06

DATE RECEIVED: 08/27/2010 **CONTACT:** Ausha Scott

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPS1-AR003-ST05	Modified TO-15	4.0 "Hg	5 psi
02A	BPS1-AR004-ST05	Modified TO-15	4.0 "Hg	5 psi
03A	BPS1-AR002-ST05	Modified TO-15	5.0 "Hg	5 psi
04A	BPS1-AR013-ST05	Modified TO-15	5.2 "Hg	5 psi
05A	BPS1-AR014-ST05	Modified TO-15	1.8 "Hg	5 psi
06A	BPS1-AR002-ODA4	Modified TO-15	11.0 "Hg	5 psi
07A	BPS1-DUP01-20100824	Modified TO-15	2.6 "Hg	5 psi
08A	BPS1-SVPM-2002D-082510	Modified TO-15	2.6 "Hg	5 psi
09A	BPS1-SVPM-2002I-082510	Modified TO-15	5.0 "Hg	5 psi
10A	BPS1-SVPM-2002S-082510	Modified TO-15	2.6 "Hg	5 psi
11A	Lab Blank	Modified TO-15	NA	NA
11B	Lab Blank	Modified TO-15	NA	NA
12A	CCV	Modified TO-15	NA	NA
12B	CCV	Modified TO-15	NA	NA
13A	LCS	Modified TO-15	NA	NA
13AA	LCSD	Modified TO-15	NA	NA
13B	LCS	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1008666A

Work Order Summary

CLIENT: Mr. David Brayack BILL TO: Accounts Payable/Pittsburg

Tetra Tech

Tetra Tech EC, Inc. Twin Oaks I, Suite 309 Foster Plaza 7 5700 Lake Wright Drive 661 Anderson Drive Pittsburgh, PA 15220-2745

Norfolk, VA 23502

(757) 461-3824 P.O. # PHONE:

FAX: (757) 461-4148 PROJECT # 112G02019 CTO-WE06

DATE RECEIVED: 08/27/2010 **CONTACT:** Ausha Scott **DATE COMPLETED:** 09/09/2010

RECEIPT **FINAL** FRACTION# **TEST** VAC./PRES. **PRESSURE** 13BB **LCSD** Modified TO-15 NA NA

CERTIFIED BY:

Linda d. Fruman

09/09/10 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Tetra Tech Workorder# 1008666A

Ten 6 Liter Summa Canister (100% Certified) samples were received on August 27, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	+- 30% RSD with 2 compounds allowed out to < 40% RSD	30% RSD with 4 compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	= 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. All The canisters used for this project have been certified to the Reporting Limit for the target analytes included in this workorder. Concentrations that are below the level at which the canister was certified may be false positives.

The recovery of surrogate 4-Bromofluorobenzene in samples BPS1-AR004-ST05 and BPS1-AR002-ST05 was outside control limits due to high level hydrocarbon matrix interference. Data is reported as qualified.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client Sample ID: BPS1-AR003-ST05

Lab ID#: 1008666A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.078	0.43	0.42	****
Trichloroethene			0.42	2.4
	0.078	0.81	0.42	4.3
Tetrachloroethene	0.078	0.36	0.52	2.4
1,1-Dichloroethene	0.16	0.038 J	0.61	
1,1-Dichloroethane		*******	0.01	0.15 J
	0.16	0.013 J	0.63	0.053 J
1,2-Dichloroethane	0.16	0.42	0.63	1.7

Client Sample ID: BPS1-AR004-ST05

Lab ID#: 1008666A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount Charges for
1,1,1-Trichloroethane	0.078	0.032 J	0.42	0.17 J data Validation
Trichloroethene	0.078	0.43	0.42	2.3 J KLF 10/25/10
Tetrachloroethene	0.078	0.28	0.52	1.9 J KUF 192516
Vinyl Chloride	0.16	0.018 J	0.40	
1,1-Dichloroethane	0.16			0.047 J
cis-1,2-Dichloroethene		0.015 J	0.63	0.061 J
	0.16	0.0060 J	0.61	0.024 J
1,2-Dichloroethane	0.16	0.038 J	0.63	0.15 J

Client Sample ID: BPS1-AR002-ST05

Lab ID#: 1008666A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount Changes from (ug/m3) Late validation
1,1,1-Trichloroethane	0.080	0.22	0.44	1.2-5 KLG-10/25/0
Trichloroethene	0.080	1.8	0.43	9.6 5 KUF-10/75/10
Tetrachloroethene	0.080	0.57	0.55	3.9 J KLF-10/25/10
1,1-Dichloroethene	0.16	0.012 J	0.64	0,048 J
1,2-Dichloroethane	0.16	0.014 J	0.65	0.056 J

Client Sample ID: BPS1-AR013-ST05

Lab ID#: 1008666A-04A

Client Sample ID: BPS1-AR013-ST05

Lab ID#: 1008666A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.081	0.057 J	0.44	0.31 J	
Trichloroethene	0.081	0.16	0.44	0.87	
Tetrachloroethene	0.081	0.33	0.55	2.2	
1,2-Dichloroethane	0.16	0.020 J	0.66	0.082 J	

Client Sample ID: BPS1-AR014-ST05

Lab ID#: 1008666A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.071	0.063 J	0.39	0.34 J
Trichloroethene	0.071	0.10	0.38	0.55
Tetrachloroethene	0.071	0.43	0.48	2.9
cis-1,2-Dichloroethene	0.14	0.0030 J	0.56	0.012 J
1,2-Dichloroethane	0.14	0.017 J	0.57	0.068 J

Client Sample ID: BPS1-AR002-ODA4

Lab ID#: 1008666A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.11	0.011 J	0.58	0.062 J	
Trichloroethene	0.11	0.0090 J	0.57	0.048 J	
Tetrachloroethene	0.11	0.024 J	0.72	0.16 J	
1,2-Dichloroethane	0.21	0.019 J	0.86	0.076 J	

Client Sample ID: BPS1-DUP01-20100824

Lab ID#: 1008666A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.074	0.062 J	0.40	0.34 J
Trichloroethene	0.074	0.18	0.40	0.94
Tetrachloroethene	0.074	0.37	0.50	2.5

Client Sample ID: BPS1-DUP01-20100824

Lab ID#: 1008666A-07A

 1,1-Dichloroethane
 0.15
 0.0022 J
 0.60
 0.0088 J

 1,2-Dichloroethane
 0.15
 0.0097 J
 0.59
 0.039 J

Client Sample ID: BPS1-SVPM-2002D-082510

Lab ID#: 1008666A-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.074	0.19	0.40	1.0
Trichloroethene	0.074	1.9	0.40	10
Tetrachloroethene	0.074	0.60	0.50	4.0
Vinyl Chloride	0.15	0.0085 J	0.38	0.022 J
1,1-Dichloroethane	0.15	0.0066 J	0.60	0.027 J
cis-1,2-Dichloroethene	0.15	0.0055 J	0.58	0.022 J
1,2-Dichloroethane	0.15	0.013 J	0.59	0.054 J

Client Sample ID: BPS1-SVPM-2002I-082510

Lab ID#: 1008666A-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.080	0.12	0.44	0.68
Trichloroethene	0.080	1.5	0.43	8.0
Tetrachloroethene	0.080	0.27	0.55	1.8
1,1-Dichloroethene	0.16	0.0093 J	0.64	0.037 J
1,1-Dichloroethane	0.16	0.0035 J	0.65	0.014 J
1,2-Dichloroethane	0.16	0.021 J	0.65	0.087 J

Client Sample ID: BPS1-SVPM-2002S-082510

Lab ID#: 1008666A-10A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.074	0.22	0.40	1.2
Trichloroethene	0.074	3.1	0.40	17
Tetrachloroethene	0.074	0.44	0.50	3.0

Client Sample ID: BPS1-SVPM-2002S-082510

Lab ID#: 1008666A-10A

Vinyl Chloride	0.15	0.011 J	0.38	0.028 J
1,1-Dichloroethene	0.15	0.018 J	0.58	0.071 J
1,1-Dichloroethane	0.15	0.0043 J	0.60	0.017 J
1,2-Dichloroethane	0.15	0.019 J	0.59	0.076 J

Client Sample ID: BPS1-AR003-ST05 Lab ID#: 1008666A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090813	Date of Collection: 8/24/10 2:54:00 PM
Dil. Factor:	1.55	Date of Analysis: 9/8/10 06:12 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.078	0.43	0.42	2.4
Trichloroethene	0.078	0.81	0.42	4.3
Tetrachloroethene	0.078	0.36	0.52	2.4
Vinyl Chloride	0.16	Not Detected	0.40	Not Detected
1,1-Dichloroethene	0.16	0.038 J	0.61	0.15 J
1,1-Dichloroethane	0.16	0.013 J	0.63	0.053 J
cis-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
1,2-Dichloroethane	0.16	0.42	0.63	1.7
trans-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	130	70-130
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	91	70-130

Client Sample ID: BPS1-AR004-ST05

Lab ID#: 1008666A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090812	Date of Collection: 8/24/10 3:00:00 PM
Dil. Factor:	1.55	Date of Analysis: 9/8/10 05:25 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3) Changes from 0.17 J aata validakon
1,1,1-Trichloroethane	0.078	0.032 J	0.42	0.17 J data validation
Trichloroethene	0.078	0.43	0.42	2.3 J KLF 10/25/10
Tetrachloroethene	0.078	0.28	0.52	1.9 J KG 10/25/0
Vinyl Chloride	0.16	0.018 J	0.40	0.047 J
1,1-Dichloroethene	0.16	Not Detected	0.61	Not Detected
1,1-Dichloroethane	0.16	0.015 J	0.63	0.061 J
cis-1,2-Dichloroethene	0.16	0.0060 J	0.61	0.024 J
1,2-Dichloroethane	0.16	0.038 J	0.63	0.15 J
trans-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected

J = Estimated value.

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	135 Q	70-130
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	87	70-130

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

Client Sample ID: BPS1-AR002-ST05

Lab ID#: 1008666A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Dil. Factor:	1.61	Date of Analysis: 9/8/10 07:03 PM
File Name:	c090814	Date of Collection: 8/24/10 3:44:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount Charges From (ug/m3) clate validation
1,1,1-Trichloroethane	0.080	0.22	0.44	1.2 J KUF -1012510
Trichloroethene	0.080	1.8	0.43	9.6 J KLF-10125/10
Tetrachloroethene	0.080	0.57	0.55	3.9 J KLF-10125110
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,1-Dichloroethene	0.16	0.012 J	0.64	0.048 J
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,2-Dichloroethane	0.16	0.014 J	0.65	0.056 J
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	138 Q	70-130
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	88	70-130

$$[\]label{eq:Jacobian} \begin{split} J &= \text{Estimated value}. \\ Q &= \text{Exceeds Quality Control limits of 70\% to 130\%, due to matrix effects}. \\ \textbf{Container Type: 6 Liter Summa Canister (100% Certified)} \end{split}$$

Client Sample ID: BPS1-AR013-ST05 Lab ID#: 1008666A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090816	Date of Collection: 8/24/10 4:41:00 PM
Dil. Factor:	1.62	Date of Analysis: 9/8/10 08:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.081	0.057 J	0.44	0.31 J
Trichloroethene	0.081	0.16	0.44	0.87
Tetrachloroethene	0.081	0.33	0.55	2.2
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.66	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,2-Dichloroethane	0.16	0.020 J	0.66	0.082 J
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	127	70-130
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	91	70-130

Client Sample ID: BPS1-AR014-ST05 Lab ID#: 1008666A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090817	Date of Collection: 8/24/10 4:47:00 PM
Dil. Factor:	1.42	Date of Analysis: 9/8/10 09:28 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.071	0.063 J	0.39	0.34 J
Trichloroethene	0.071	0.10	0.38	0.55
Tetrachloroethene	0.071	0.43	0.48	2.9
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
1,1-Dichloroethene	0.14	Not Detected	0.56	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.57	Not Detected
cis-1,2-Dichloroethene	0.14	0.0030 J	0.56	0.012 J
1,2-Dichloroethane	0.14	0.017 J	0.57	0.068 J
trans-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	125	70-130	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	86	70-130	

Client Sample ID: BPS1-AR002-ODA4 Lab ID#: 1008666A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090818	Date of Collection: 8/24/10 6:14:00 PM
Dil. Factor:	2.12	Date of Analysis: 9/8/10 10:13 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.11	0.011 J	0.58	0.062 J
Trichloroethene	0.11	0.0090 J	0.57	0.048 J
Tetrachloroethene	0.11	0.024 J	0.72	0.16 J
Vinyl Chloride	0.21	Not Detected	0.54	Not Detected
1,1-Dichloroethene	0.21	Not Detected	0.84	Not Detected
1,1-Dichloroethane	0.21	Not Detected	0.86	Not Detected
cis-1,2-Dichloroethene	0.21	Not Detected	0.84	Not Detected
1,2-Dichloroethane	0.21	0.019 J	0.86	0.076 J
trans-1,2-Dichloroethene	0.21	Not Detected	0.84	Not Detected

J = Estimated value.

•		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	109	70-130	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	85	70-130	

Client Sample ID: BPS1-DUP01-20100824

Lab ID#: 1008666A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090819	Date of Collection: 8/24/10
Dil. Factor:	1.47	Date of Analysis: 9/8/10 10:59 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.074	0.062 J	0.40	0.34 J
Trichloroethene	0.074	0.18	0.40	0.94
Tetrachloroethene	0.074	0.37	0.50	2.5
Vinyl Chloride	0.15	Not Detected	0.38	Not Detected
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1-Dichloroethane	0.15	0.0022 J	0.60	0.0088 J
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,2-Dichloroethane	0.15	0.0097 J	0.59	0.039 J
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	125	70-130
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	91	70-130

Client Sample ID: BPS1-SVPM-2002D-082510

Lab ID#: 1008666A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090820	Date of Collection: 8/25/10 2:58:00 PM
Dil. Factor:	1.47	Date of Analysis: 9/9/10 07:38 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.074	0.19	0.40	1.0
Trichloroethene	0.074	1.9	0.40	10
Tetrachloroethene	0.074	0.60	0.50	4.0
Vinyl Chloride	0.15	0.0085 J	0.38	0.022 J
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1-Dichloroethane	0.15	0.0066 J	0.60	0.027 J
cis-1,2-Dichloroethene	0.15	0.0055 J	0.58	0.022 J
1,2-Dichloroethane	0.15	0.013 J	0.59	0.054 J
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	120	70-130	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	105	70-130	

Client Sample ID: BPS1-SVPM-2002I-082510

Lab ID#: 1008666A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090821	Date of Collection: 8/25/10 3:28:00 PM
Dil. Factor:	1.61	Date of Analysis: 9/9/10 08:23 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.080	0.12	0.44	0.68
Trichloroethene	0.080	1.5	0.43	8.0
Tetrachloroethene	0.080	0.27	0.55	1.8
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,1-Dichloroethene	0.16	0.0093 J	0.64	0.037 J
1,1-Dichloroethane	0.16	0.0035 J	0.65	0.014 J
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,2-Dichloroethane	0.16	0.021 J	0.65	0.087 J
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	118	70-130	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	103	70-130	

Client Sample ID: BPS1-SVPM-2002S-082510

Lab ID#: 1008666A-10A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090908	Date of Collection: 8/25/10 4:25:00 PM
Dil. Factor:	1.47	Date of Analysis: 9/9/10 03:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.074	0.22	0.40	1.2
Trichloroethene	0.074	3.1	0.40	17
Tetrachloroethene	0.074	0.44	0.50	3.0
Vinyl Chloride	0.15	0.011 J	0.38	0.028 J
1,1-Dichloroethene	0.15	0.018 J	0.58	0.071 J
1,1-Dichloroethane	0.15	0.0043 J	0.60	0.017 J
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,2-Dichloroethane	0.15	0.019 J	0.59	0.076 J
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	129	70-130
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1008666A-11A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090809a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/8/10 02:27 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.050	Not Detected	0.27	Not Detected
Trichloroethene	0.050	Not Detected	0.27	Not Detected
Tetrachloroethene	0.050	Not Detected	0.34	Not Detected
Vinyl Chloride	0.10	Not Detected	0.26	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1-Dichloroethane	0.10	Not Detected	0.40	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,2-Dichloroethane	0.10	Not Detected	0.40	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

,		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	103	70-130	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	85	70-130	

Client Sample ID: Lab Blank Lab ID#: 1008666A-11B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090907a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/9/10 01:53 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.050	Not Detected	0.27	Not Detected
Trichloroethene	0.050	Not Detected	0.27	Not Detected
Tetrachloroethene	0.050	Not Detected	0.34	Not Detected
Vinyl Chloride	0.10	Not Detected	0.26	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1-Dichloroethane	0.10	Not Detected	0.40	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,2-Dichloroethane	0.10	Not Detected	0.40	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

,		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	105	70-130	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	87	70-130	

Client Sample ID: CCV Lab ID#: 1008666A-12A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090802 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/8/10 09:23 AM

Compound	%Recovery
1,1,1-Trichloroethane	91
Trichloroethene	99
Tetrachloroethene	113
Vinyl Chloride	75
1,1-Dichloroethene	88
1,1-Dichloroethane	85
cis-1,2-Dichloroethene	83
1,2-Dichloroethane	97
trans-1,2-Dichloroethene	86

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	107	70-130
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130

Client Sample ID: CCV Lab ID#: 1008666A-12B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/9/10 09:32 AM

Compound	%Recovery
1,1,1-Trichloroethane	95
Trichloroethene	98
Tetrachloroethene	107
Vinyl Chloride	84
1,1-Dichloroethene	94
1,1-Dichloroethane	90
cis-1,2-Dichloroethene	86
1,2-Dichloroethane	101
trans-1,2-Dichloroethene	88

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	105	70-130
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	99	70-130

Client Sample ID: LCS Lab ID#: 1008666A-13A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/8/10 10:59 AM

Compound	%Recovery
1,1,1-Trichloroethane	89
Trichloroethene	93
Tetrachloroethene	104
Vinyl Chloride	74
1,1-Dichloroethene	77
1,1-Dichloroethane	80
cis-1,2-Dichloroethene	80
1,2-Dichloroethane	90
trans-1,2-Dichloroethene	83

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	109	70-130
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	101	70-130

Client Sample ID: LCSD Lab ID#: 1008666A-13AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090805 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/8/10 11:42 AM

Compound	%Recovery
1,1,1-Trichloroethane	89
Trichloroethene	92
Tetrachloroethene	103
Vinyl Chloride	76
1,1-Dichloroethene	78
1,1-Dichloroethane	81
cis-1,2-Dichloroethene	80
1,2-Dichloroethane	89
trans-1,2-Dichloroethene	82

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	105	70-130
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	100	70-130

Client Sample ID: LCS Lab ID#: 1008666A-13B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/9/10 11:39 AM

Compound	%Recovery
1,1,1-Trichloroethane	90
Trichloroethene	93
Tetrachloroethene	101
Vinyl Chloride	77
1,1-Dichloroethene	82
1,1-Dichloroethane	82
cis-1,2-Dichloroethene	81
1,2-Dichloroethane	96
trans-1,2-Dichloroethene	84

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	108	70-130
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130

Client Sample ID: LCSD Lab ID#: 1008666A-13BB

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090905 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/9/10 12:22 PM

Compound	%Recovery
1,1,1-Trichloroethane	88
Trichloroethene	94
Tetrachloroethene	101
Vinyl Chloride	75
1,1-Dichloroethene	81
1,1-Dichloroethane	82
cis-1,2-Dichloroethene	81
1,2-Dichloroethane	97
trans-1,2-Dichloroethene	83

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	110	70-130
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	100	70-130

9/16/2010 Mr. David Brayack Tetra Tech Twin Oaks I, Suite 309 5700 Lake Wright Drive Norfolk VA 23502

Project Name: CTO-WE06 Project #: 112G02019 Workorder #: 1008666B

Dear Mr. David Brayack

The following report includes the data for the above referenced project for sample(s) received on 8/27/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1008666B

Work Order Summary

CLIENT: Mr. David Brayack **BILL TO:** Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc. Foster Plaza 7 Twin Oaks I, Suite 309

5700 Lake Wright Drive 661 Anderson Drive Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: (757) 461-3824 **P.O.** #

09/16/2010

FAX: (757) 461-4148 PROJECT # 112G02019 CTO-WE06

DATE RECEIVED: 08/27/2010 **CONTACT:** Ausha Scott DATE COMPLETED:

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
11A	BPS1-SVPM-2003D-082510	Modified TO-15	2.5 "Hg	5 psi
12A	BPS1-SVPM-ODA-082510	Modified TO-15	13.0 "Hg	5 psi
13A	BPS1-SVPM-2004I-082610	Modified TO-15	4.0 "Hg	5 psi
14A	BPS1-SVPM-2004D-082610	Modified TO-15	4.5 "Hg	5 psi
15A	BPS1-SVPM-DUP02-082610	Modified TO-15	4.5 "Hg	5 psi
16A	BPS1-SVPM-2007D-082610	Modified TO-15	2.5 "Hg	5 psi
17A	BPS1-SVPM-12S-082610	Modified TO-15	3.5 "Hg	5 psi
18A	BPS1-SVPM-11S-082610	Modified TO-15	4.0 "Hg	5 psi
19A	BPS1-SVPM-2003I-082610	Modified TO-15	4.5 "Hg	5 psi
20A	BPS1-DUP03-082610	Modified TO-15	6.5 "Hg	5 psi
21A	BPS1-SVPM-ODA-082610	Modified TO-15	10.0 "Hg	5 psi
22A	Lab Blank	Modified TO-15	NA	NA
22B	Lab Blank	Modified TO-15	NA	NA
23A	CCV	Modified TO-15	NA	NA
23B	CCV	Modified TO-15	NA	NA
24A	LCS	Modified TO-15	NA	NA
24AA	LCSD	Modified TO-15	NA	NA

Continued on next page

PHONE:

WORK ORDER #: 1008666B

Work Order Summary

CLIENT: Mr. David Brayack BILL TO: Accounts Payable/Pittsburg

Tetra Tech

Tetra Tech EC, Inc. Twin Oaks I, Suite 309 Foster Plaza 7 5700 Lake Wright Drive 661 Anderson Drive Norfolk, VA 23502 Pittsburgh, PA 15220-2745

(757) 461-3824 P.O. #

FAX: (757) 461-4148 PROJECT # 112G02019 CTO-WE06

DATE RECEIVED: 08/27/2010 **CONTACT:** Ausha Scott **DATE COMPLETED:** 09/16/2010

RECEIPT **FINAL** FRACTION# **NAME TEST** VAC./PRES. **PRESSURE** 24B LCS Modified TO-15 NA NA Modified TO-15 NA NA 24BB **LCSD**

CERTIFIED BY:

Sinda d. Fruman

09/16/10 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Std & LL Full Scan Tetra Tech Workorder# 1008666B

Eleven 6 Liter Summa Canister (100% Certified) samples were received on August 27, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan mode. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-14A	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to = 40% RSD</td <td>For LL Full Scan only: <!--= 30% RSD with 4 compounds allowed out to </= 40% RSD</td--></td>	For LL Full Scan only: = 30% RSD with 4 compounds allowed out to </= 40% RSD</td
Daily Calibration	+- 30% Difference	For Std. Full Scan: = 30% Difference with two allowed out up to </=40%.; flag and narrate outliers For LL Full Scan: </= 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	For LL Full Scan only: Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request

Receiving Notes

The Chain of Custody (COC) information for sample BPS1-DUP03-082610 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. All The canisters used for this project have been certified to the Reporting Limit for the target analytes included in this workorder. Concentrations that are below the level at which the canister was certified may be false positives.

Samples BPS1-SVPM-12S-082610, BPS1-SVPM-11S-082610 and BPS1-DUP03-082610 were transferred from Low Level analysis to full scan TO-15 due to high levels of target compounds.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client Sample ID: BPS1-SVPM-2003D-082510

Lab ID#: 1008666B-11A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.073	0.21	0.40	1.2
Trichloroethene	0.073	0.96	0.39	5.2
Tetrachloroethene	0.073	0.37	0.50	2.5
1,1-Dichloroethane	0.15	0.0065 J	0.59	0.026 J
1,2-Dichloroethane	0.15	0.016 J	0.59	0.063 J

Client Sample ID: BPS1-SVPM-ODA-082510

Lab ID#: 1008666B-12A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.12	0.0066 J	0.64	0.036 J
Trichloroethene	0.12	0.0082 J	0.63	0.044 J
Tetrachloroethene	0.12	0.040 J	0.80	0.27 J
1,2-Dichloroethane	0.24	0.020 J	0.96	0.082 J

Client Sample ID: BPS1-SVPM-2004I-082610

Lab ID#: 1008666B-13A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.078	0.037 J	0.42	0.20 J
Trichloroethene	0.078	0.053 J	0.42	0.28 J
Tetrachloroethene	0.078	0.27	0.52	1.8
Vinyl Chloride	0.16	0.0062 J	0.40	0.016 J
1,1-Dichloroethene	0.16	0.011 J	0.61	0.043 J
1,1-Dichloroethane	0.16	0.018 J	0.63	0.072 J
1,2-Dichloroethane	0.16	0.016 J	0.63	0.065 J
trans-1,2-Dichloroethene	0.16	0.0037 J	0.61	0.015 J

Client Sample ID: BPS1-SVPM-2004D-082610

Lab ID#: 1008666B-14A

Client Sample ID: BPS1-SVPM-2004D-082610

Lab ID#: 1008666B-14A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.079	0.061 J	0.43	0.33 J
Trichloroethene	0.079	0.087	0.42	0.47
Tetrachloroethene	0.079	0.43	0.54	2.9
Vinyl Chloride	0.16	0.016 J	0.40	0.042 J
1,1-Dichloroethane	0.16	0.0074 J	0.64	0.030 J
1,2-Dichloroethane	0.16	0.019 J	0.64	0.078 J

Client Sample ID: BPS1-SVPM-DUP02-082610

Lab ID#: 1008666B-15A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.079	0.030 J	0.43	0.17 J
Trichloroethene	0.079	0.049 J	0.42	0.26 J
Tetrachloroethene	0.079	0.31	0.54	2.1
Vinyl Chloride	0.16	0.011 J	0.40	0.028 J
1,1-Dichloroethane	0.16	0.020 J	0.64	0.079 J
1,2-Dichloroethane	0.16	0.014 J	0.64	0.056 J

Client Sample ID: BPS1-SVPM-2007D-082610

Lab ID#: 1008666B-16A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.073	0.27	0.40	1.5
Trichloroethene	0.073	0.29	0.39	1.5
Tetrachloroethene	0.073	0.40	0.50	2.7
Vinyl Chloride	0.15	0.014 J	0.37	0.036 J
1,1-Dichloroethane	0.15	0.010 J	0.59	0.041 J
cis-1,2-Dichloroethene	0.15	0.24	0.58	0.95
1,2-Dichloroethane	0.15	0.027 J	0.59	0.11 J
trans-1,2-Dichloroethene	0.15	0.014 J	0.58	0.054 J

Client Sample ID: BPS1-SVPM-12S-082610

Lab ID#: 1008666B-17A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethane	0.76	0.29 J	3.1	1.2 J
cis-1,2-Dichloroethene	0.76	36	3.0	140
1,1,1-Trichloroethane	0.76	13	4.1	71
Trichloroethene	0.76	220	4.1	1200
trans-1,2-Dichloroethene	0.76	0.57 J	3.0	2.2 J
1,2-Dichloroethane	0.76	0.58 J	3.1	20 JK16-10/25/E 55 Blank
Tetrachloroethene	0.76	8.1	5.2	55 % Lank Conteminat

Client Sample ID: BPS1-SVPM-11S-082610

Lab ID#: 1008666B-18A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	2.1	9.7	8.2	38
1,1,1-Trichloroethane	2.1	3.0	11	16
Trichloroethene	2.1	570	11	3100
trans-1,2-Dichloroethene	2.1	1.0 J	8.2	4.1 J
Tetrachloroethene	2.1	49	14	330

Client Sample ID: BPS1-SVPM-2003I-082610

Lab ID#: 1008666B-19A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.079	0.043 J	0.43	0.23 J
Trichloroethene	0.079	0.066 J	0.42	0.36 J
Tetrachloroethene	0.079	0.74	0.54	5.0

Client Sample ID: BPS1-DUP03-082610

Lab ID#: 1008666B-20A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,1-Dichloroethane	0.86	0.32 J	3.5	1.3 J

Client Sample ID: BPS1-DUP03-082610

Lab ID#: 1008666B-20A				
cis-1,2-Dichloroethene	0.86	39	3.4	150
1,1,1-Trichloroethane	0.86	14	4.7	74
Trichloroethene	0.86	220	4.6	1200
trans-1,2-Dichloroethene	0.86	0.63 J	3.4	2.5 J
1,2-Dichloroethane	0.86	0.16 J	3.5	0.05 I not detected
Tetrachloroethene	0.86	7.8	5.8	53 Blank Contemporation

Client Sample ID: BPS1-SVPM-ODA-082610

Lab ID#: 1008666B-21A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.10	0.0068 J	0.55	0.037 J
Trichloroethene	0.10	0.0074 J	0.54	0.040 J
Tetrachloroethene	0.10	0.036 J	0.68	0.24 J
cis-1,2-Dichloroethene	0.20	0.0064 J	0.80	0.026 J
1,2-Dichloroethane	0.20	0.025 J	0.81	0.10 J

Client Sample ID: BPS1-SVPM-2003D-082510

Lab ID#: 1008666B-11A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090909	Date of Collection: 8/25/10 6:00:00 PM
Dil. Factor:	1.46	Date of Analysis: 9/9/10 03:57 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.073	0.21	0.40	1.2
Trichloroethene	0.073	0.96	0.39	5.2
Tetrachloroethene	0.073	0.37	0.50	2.5
Vinyl Chloride	0.15	Not Detected	0.37	Not Detected
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1-Dichloroethane	0.15	0.0065 J	0.59	0.026 J
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,2-Dichloroethane	0.15	0.016 J	0.59	0.063 J
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected

J = Estimated value.

•		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	124	70-130	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	103	70-130	

Client Sample ID: BPS1-SVPM-ODA-082510

Lab ID#: 1008666B-12A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090910	Date of Collection: 8/25/10 6:03:00 PM
Dil. Factor:	2.36	Date of Analysis: 9/9/10 05:15 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.12	0.0066 J	0.64	0.036 J
Trichloroethene	0.12	0.0082 J	0.63	0.044 J
Tetrachloroethene	0.12	0.040 J	0.80	0.27 J
Vinyl Chloride	0.24	Not Detected	0.60	Not Detected
1,1-Dichloroethene	0.24	Not Detected	0.94	Not Detected
1,1-Dichloroethane	0.24	Not Detected	0.96	Not Detected
cis-1,2-Dichloroethene	0.24	Not Detected	0.94	Not Detected
1,2-Dichloroethane	0.24	0.020 J	0.96	0.082 J
trans-1,2-Dichloroethene	0.24	Not Detected	0.94	Not Detected

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	115	70-130	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	86	70-130	

Client Sample ID: BPS1-SVPM-2004I-082610

Lab ID#: 1008666B-13A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090911	Date of Collection: 8/26/10 9:18:00 AM
Dil. Factor:	1.55	Date of Analysis: 9/9/10 06:00 PM

Compound	Rpt. Limit	Amount	Rpt. Limit (ug/m3)	Amount (ug/m3)
Compound	(ppbv)	(ppbv)	(ug/ilis)	(ug/ilis)
1,1,1-Trichloroethane	0.078	0.037 J	0.42	0.20 J
Trichloroethene	0.078	0.053 J	0.42	0.28 J
Tetrachloroethene	0.078	0.27	0.52	1.8
Vinyl Chloride	0.16	0.0062 J	0.40	0.016 J
1,1-Dichloroethene	0.16	0.011 J	0.61	0.043 J
1,1-Dichloroethane	0.16	0.018 J	0.63	0.072 J
cis-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
1,2-Dichloroethane	0.16	0.016 J	0.63	0.065 J
trans-1,2-Dichloroethene	0.16	0.0037 J	0.61	0.015 J

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	121	70-130	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	99	70-130	

Client Sample ID: BPS1-SVPM-2004D-082610

Lab ID#: 1008666B-14A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090912	Date of Collection: 8/26/10 9:20:00 AM
Dil. Factor:	1.58	Date of Analysis: 9/9/10 06:44 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.079	0.061 J	0.43	0.33 J
Trichloroethene	0.079	0.087	0.42	0.47
Tetrachloroethene	0.079	0.43	0.54	2.9
Vinyl Chloride	0.16	0.016 J	0.40	0.042 J
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1-Dichloroethane	0.16	0.0074 J	0.64	0.030 J
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,2-Dichloroethane	0.16	0.019 J	0.64	0.078 J
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	126	70-130
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	106	70-130

Client Sample ID: BPS1-SVPM-DUP02-082610

Lab ID#: 1008666B-15A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090913	Date of Collection: 8/26/10 12:00:00 PM
Dil. Factor:	1.58	Date of Analysis: 9/9/10 07:23 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.079	0.030 J	0.43	0.17 J
Trichloroethene	0.079	0.049 J	0.42	0.26 J
Tetrachloroethene	0.079	0.31	0.54	2.1
Vinyl Chloride	0.16	0.011 J	0.40	0.028 J
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1-Dichloroethane	0.16	0.020 J	0.64	0.079 J
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,2-Dichloroethane	0.16	0.014 J	0.64	0.056 J
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	124	70-130
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	102	70-130

Client Sample ID: BPS1-SVPM-2007D-082610

Lab ID#: 1008666B-16A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090914	Date of Collection: 8/26/10 10:40:00 AM
Dil. Factor:	1.46	Date of Analysis: 9/9/10 08:55 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.073	0.27	0.40	1.5
Trichloroethene	0.073	0.29	0.39	1.5
Tetrachloroethene	0.073	0.40	0.50	2.7
Vinyl Chloride	0.15	0.014 J	0.37	0.036 J
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1-Dichloroethane	0.15	0.010 J	0.59	0.041 J
cis-1,2-Dichloroethene	0.15	0.24	0.58	0.95
1,2-Dichloroethane	0.15	0.027 J	0.59	0.11 J
trans-1,2-Dichloroethene	0.15	0.014 J	0.58	0.054 J

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	122	70-130
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	109	70-130

Client Sample ID: BPS1-SVPM-12S-082610

Lab ID#: 1008666B-17A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091411	Date of Collection: 8/26/10 12:38:00 PM
Dil. Factor:	1.52	Date of Analysis: 9/14/10 04:23 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.76	Not Detected	1.9	Not Detected
1,1-Dichloroethene	0.76	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.76	0.29 J	3.1	1.2 J
cis-1,2-Dichloroethene	0.76	36	3.0	140
1,1,1-Trichloroethane	0.76	13	4.1	71
Trichloroethene	0.76	220	4.1	1200
trans-1,2-Dichloroethene	0.76	0.57 J	3.0	2.2 J
1,2-Dichloroethane	0.76	0.58 J	3.1	2.3 JR0+ dekeled
Tetrachloroethene	0.76	8.1	5.2	55 Glank Contemnati

J = Estimated value.

Surrogates	%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: BPS1-SVPM-11S-082610

Lab ID#: 1008666B-18A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p091416
 Date of Collection:
 8/26/10 12:57:00 PM

 Dil. Factor:
 4.13
 Date of Analysis:
 9/14/10 06:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	2.1	Not Detected	5.3	Not Detected
1,1-Dichloroethene	2.1	Not Detected	8.2	Not Detected
1,1-Dichloroethane	2.1	Not Detected	8.4	Not Detected
cis-1,2-Dichloroethene	2.1	9.7	8.2	38
1,1,1-Trichloroethane	2.1	3.0	11	16
Trichloroethene	2.1	570	11	3100
trans-1,2-Dichloroethene	2.1	1.0 J	8.2	4.1 J
1,2-Dichloroethane	2.1	Not Detected	8.4	Not Detected
Tetrachloroethene	2.1	49	14	330

J = Estimated value.

-		Method Limits	
Surrogates	%Recovery		
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	99	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: BPS1-SVPM-2003I-082610

Lab ID#: 1008666B-19A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090915	Date of Collection: 8/26/10 3:01:00 PM
Dil. Factor:	1.58	Date of Analysis: 9/9/10 09:36 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.079	0.043 J	0.43	0.23 J
Trichloroethene	0.079	0.066 J	0.42	0.36 J
Tetrachloroethene	0.079	0.74	0.54	5.0
Vinyl Chloride	0.16	Not Detected	0.40	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.64	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,2-Dichloroethane	0.16	Not Detected	0.64	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

J = Estimated value.

		Method Limits	
Surrogates	%Recovery		
4-Bromofluorobenzene	117	70-130	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	114	70-130	

Client Sample ID: BPS1-DUP03-082610

Lab ID#: 1008666B-20A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091415	Date of Collection: 8/26/10 4:00:00 PM
Dil. Factor:	1.71	Date of Analysis: 9/14/10 05:57 PM
	D.,4 1.1 14	

			017 mary 313. 3/14	/10 03.5/ PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	
1,1-Dichloroethene	0.86	Not Detected		Not Detected
1,1-Dichloroethane	0.86		3.4	Not Detected
cis-1,2-Dichloroethene		0.32 J	3.5	1.3 J
	0.86	39	3.4	150
1,1,1-Trichloroethane	0.86	14	4.7	74
Trichloroethene	0.86	220	4.6	1200
trans-1,2-Dichloroethene	0.86	0.63 J	3.4	2.5 J
1,2-Dichloroethane	0.86	0.16 J	3.5	-0:65-JAD4 Det
Tetrachloroethene	0.86	7.8	5.8	53 /012-511

J = Estimated value.

Surrogates	%Recovery	Method Limits
Toluene-d8 1,2-Dichloroethane-d4	97 99	70-130
4-Bromofluorobenzene	100	70-130 70-130

Client Sample ID: BPS1-SVPM-ODA-082610

Lab ID#: 1008666B-21A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090916	Date of Collection: 8/26/10 3:10:00 PM
Dil. Factor:	2.01	Date of Analysis: 9/9/10 10:19 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.10	0.0068 J	0.55	0.037 J
Trichloroethene	0.10	0.0074 J	0.54	0.040 J
Tetrachloroethene	0.10	0.036 J	0.68	0.24 J
Vinyl Chloride	0.20	Not Detected	0.51	Not Detected
1,1-Dichloroethene	0.20	Not Detected	0.80	Not Detected
1,1-Dichloroethane	0.20	Not Detected	0.81	Not Detected
cis-1,2-Dichloroethene	0.20	0.0064 J	0.80	0.026 J
1,2-Dichloroethane	0.20	0.025 J	0.81	0.10 J
trans-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	111	70-130
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	89	70-130

Client Sample ID: Lab Blank Lab ID#: 1008666B-22A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	c090907a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/9/10 01:53 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.050	Not Detected	0.27	Not Detected
Trichloroethene	0.050	Not Detected	0.27	Not Detected
Tetrachloroethene	0.050	Not Detected	0.34	Not Detected
Vinyl Chloride	0.10	Not Detected	0.26	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1-Dichloroethane	0.10	Not Detected	0.40	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,2-Dichloroethane	0.10	Not Detected	0.40	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

,		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	105	70-130
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	87	70-130

Client Sample ID: Lab Blank Lab ID#: 1008666B-22B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p091406c Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/14/10 12:03 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	0.15 J	2.7	0.82 J
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloroethane	0.50	0.10 J	2.0	0.42 J
Tetrachloroethene	0.50	0.20 J	3.4	1.3 J

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: CCV Lab ID#: 1008666B-23A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/9/10 09:32 AM

Compound	%Recovery
1,1,1-Trichloroethane	95
Trichloroethene	98
Tetrachloroethene	107
Vinyl Chloride	84
1,1-Dichloroethene	94
1,1-Dichloroethane	90
cis-1,2-Dichloroethene	86
1,2-Dichloroethane	101
trans-1,2-Dichloroethene	88

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	105	70-130
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	99	70-130

Client Sample ID: CCV Lab ID#: 1008666B-23B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p091402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/14/10 09:34 AM

Compound	%Recovery
Vinyl Chloride	100
1,1-Dichloroethene	101
1,1-Dichloroethane	101
cis-1,2-Dichloroethene	101
1,1,1-Trichloroethane	102
Trichloroethene	101
trans-1,2-Dichloroethene	101
1,2-Dichloroethane	103
Tetrachloroethene	102

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: LCS Lab ID#: 1008666B-24A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090904 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/9/10 11:39 AM

Compound	%Recovery
1,1,1-Trichloroethane	90
Trichloroethene	93
Tetrachloroethene	101
Vinyl Chloride	77
1,1-Dichloroethene	82
1,1-Dichloroethane	82
cis-1,2-Dichloroethene	81
1,2-Dichloroethane	96
trans-1,2-Dichloroethene	84

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	108	70-130
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130

Client Sample ID: LCSD Lab ID#: 1008666B-24AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: c090905 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/9/10 12:22 PM

Compound	%Recovery
1,1,1-Trichloroethane	88
Trichloroethene	94
Tetrachloroethene	101
Vinyl Chloride	75
1,1-Dichloroethene	81
1,1-Dichloroethane	82
cis-1,2-Dichloroethene	81
1,2-Dichloroethane	97
trans-1,2-Dichloroethene	83

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	110	70-130
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	100	70-130

Client Sample ID: LCS Lab ID#: 1008666B-24B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p091403 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/14/10 10:18 AM

Compound	%Recovery
Vinyl Chloride	102
1,1-Dichloroethene	92
1,1-Dichloroethane	98
cis-1,2-Dichloroethene	100
1,1,1-Trichloroethane	102
Trichloroethene	101
trans-1,2-Dichloroethene	101
1,2-Dichloroethane	98
Tetrachloroethene	99

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	0-130
1,2-Dichloroethane-d4	100	0-130
4-Bromofluorobenzene	99	0-130

Client Sample ID: LCSD Lab ID#: 1008666B-24BB

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p091404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/14/10 10:35 AM

Compound	%Recovery
Vinyl Chloride	104
1,1-Dichloroethene	93
1,1-Dichloroethane	99
cis-1,2-Dichloroethene	101
1,1,1-Trichloroethane	104
Trichloroethene	102
trans-1,2-Dichloroethene	103
1,2-Dichloroethane	100
Tetrachloroethene	104

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	0-130
1,2-Dichloroethane-d4	99	0-130
4-Bromofluorobenzene	101	0-130

APPENDIX E DATA VALIDATION SUMMARIES

INTERNAL CORRESPONDENCE

TO:

D. BRAYACK

DATE:

AUGUST 27, 2010

FROM:

JOSEPH KALINYAK

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

NWIRP BETHPAGE CTO WE06

SDG 1007700B

SAMPLES:

5 / Air / VOC

BPS1-AR003-INDB-5

BPS1-AR003-INDL-5

BPS1-AR003-ODA3

BPS1-AR003-SSB3

BPS1-DUP01

Overview

The sample set for NWIRP Bethpage SDG 1007700B consisted of five (5) air environmental samples. The air samples were analyzed for a select list of volatile organic compounds (VOC). There was one field duplicate pair associated with this sample delivery group (SDG); BPS1-DUP01 / BPS1-AR003-INDL-5.

The samples were collected by Tetra Tech on July 28, 2010 and analyzed by Air Toxics LTD. The analysis was conducted in accordance with EPA Method TO-15 analytical and reporting protocols. The data contained in this SDG was validated with regard to the following parameters:

- Data completeness
- Hold times
- GCMS System Tuning and Performance
 - Initial/continuing calibrations
- Laboratory Control Sample Recoveries
 - Laboratory Method Blank Results
 - Surrogate Spike Recoveries
 - Internal Standard Recoveries
- Compound Identification
- Compound Quantitation
- Field Duplicate Precision
- Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, Region II data validation forms are presented in Appendix C, and documentation supporting these findings is presented in Appendix D.

Volatile

No issues were identified.

Additional Comments

The initial sample analysis was performed on an instrument that yielded higher detection limits for the VOCs than previous analyses performed by the laboratory for this site. The laboratory was contacted on this issue

TO: D. BRAYACK SDG: 1007700B

PAGE: 2

and was asked to re-analyze the samples on an instrument that would yield lower analyte detection limits with results similar to historical data for the sample site region. The re-analysis data set was validated in this report. Results were similar to original analyses and the detection limits were significantly improved.

Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The laboratory reported the VOC air result concentrations in units of both ppbv and $\mu g/m3$ on the sample forms. The results in the database and the qualified analytical result concentrations are reported as $\mu g/m3$ only.

EXECUTIVE SUMMARY

Laboratory Performance Issues: None.

Other Factors Affecting Data Quality: Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The data for these analyses were reviewed with reference to the "Volatile Organic Analysis of Ambient Air In Canister By Method TO-15" EPA Region II SOP #HW-31 Revision #4 October 2006 and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006).

TelraTech NUS Jeseph Kalinvak

Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck

Data Validation Quality Assurance Officer

Attachments:

- Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Region II Data Validation Forms
- 4. Appendix D Support Documentation

Appendix A

Qualified Analytical Results

Value Qualifier Key (Val Qual)

J – The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The result is an estimated non-detected quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

U - Value is a non-detect as reported by the laboratory.

UR - Non-detected result is considered rejected, (UR), as a result of technical non-compliances.

DATA QUALIFICATION CODE (QUAL CODE)

A = Lab Blank Contemination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, ARFs, etc.)

CO1 = GC/MS Tuning Noncompliance

D - MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N - Internal Standard Noncompliance

NOT - Internal Standard Recovery Moncompliance Dioxins

NO2 - Recovery Standard Noncompliance Dioxins

NC3 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drilting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995</p>

W = EMPC result

X - Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

	- : : : : : : :													
PRO3_NO: 02019	NSAMPLE	BPS1-AR003-INDB-5	DB-5	1	BPS1-AR003-INDL-5	INDL-5		BPS1-AR003-ODA3	ODA3		BPS1-AR003-SSB3	3-SSB3		
SDG: 1007700B	LAB_ID	1007700B-02A			1007700B-03A	ď		1007700B-04A	4		1007700B-01A	_ ₹		
FRACTION: OV	SAMP_DATE	7/28/2010			7/28/2010			7/28/2010			7/28/2010			
MEDIA: AIR	QC_TYPE	NM			ΣN			ΣN			ΣZ			
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3			
	PCT_SOLIDS													
	DUP_OF													
PARAMETER		RESULT	VQL QLCD		RESULT	VQL	QLCD	RESULT	Val	alco	RESULT	VQL	QLCD	
1,1,1-TRICHLOROETHANE		1.9			3.3			0.07	_	۵	2.3	8		
1,1-DICHLOROETHANE		0.55 U			0.65	>		0.86)]		0.6	0.65 U		
1,1-DICHLOROETHENE		0.54 U	 		0.64 U	ם		0.84 U	<u>ר</u>		0.6	0.64 U		
1,2-DICHLOROETHANE		2.8			1.6			0.27	_	a.	1.4	4		
CIS-1,2-DICHLOROETHENE	<u> </u>	0.54 U			0.64	>		0.84	<u>כ</u>		0.024	2	<u></u>	
TETRACHLOROETHENE		0.28 J	_		0.28	5	Ь	0.16	_	Ь	0.96	9		
TRANS-1,2-DICHLOROETHENE	-ENE	0.54 U			0.64	_		0.84	ם		0.6	0.64 U		
TRICHLOROETHENE		0.27 J	<u>a</u>		0.16		Д	0.22	7	<u>a</u>		14		
VINYL CHLORIDE		0.35 U			0.41 L	b		0.54 U)]		0.41	1 0		

SDG: 1007700B LAB_ID FRACTION: OV SAMP_DATE MEDIA: AIR QC_TYPE UNITS PCT_SOLIDS PARAMETER 1,1,1-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE			
╵┈╵┈╵┈╵ ╸┤┉╎╴│ ╴│ ╴╠╣	1007700B-05A		
'──── ┤│ш┤│││ <mark></mark> 월│	7/28/2010		
╵ ┈╵┈╵ ┆ш┆╴┆╏╩╎	NA		
└─┴─ ┤ ╽┉├ │	UG/M3		
─┤ │ш│ │ │ │≝│	(0)		
PARAMETER 1,1,1-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE	BPS1-AR003-INDL-5	DL-5	
1,1,1-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE	RESULT	VQL	QLCD
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE	2.9		
1,1-DICHLOROETHENE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE	1.3 L		
1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE	1.2 L		
CIS-1,2-DICHLOROETHENE TETRACHLOROETHENE	1.5		
TETRACHLOROETHENE	1.2 U		
	0.28		
TRANS-1,2-DICHLOROETHENE	1.2 U	_	
TRICHLOROETHENE	0.15	Δ.	
VINYL CHLORIDE	ט.8 ר	_	

INTERNAL CORRESPONDENCE

TO:

D. BRAYACK

DATE:

OCTOBER 07, 2010

FROM:

LEIGH A. CIOFANI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

CTO WE06, NWIRP BETHPAGE

SAMPLE DELIVERY GROUP (SDG) 1008666A

SAMPLES:

10 / Air /

BPS1-AR002-ODA4

BPS1-AR002-ST05 BPS1-AR013-ST05 BPS1-AR003-ST05

BPS1-AR004-ST05 BPS1-DUP01-20100824

BPS1-SVPM-2002D-082510

BPS1-AR014-ST05 BPS1-SVPM-2002I-082510

BPS1-SVPM-2002S-082510

OVERVIEW

The sample set for CTO WE06, NWIRP Bethpage, SDG 1008666A, consists of ten (10) air environmental samples. There is one (1) field duplicate pair included in this SDG: BPS1-AR013-ST05 (original) / BPS1-DUP01-20100824 (duplicate).

Samples were analyzed for volatile organic compounds (VOC). The samples were collected by Tetra Tech NUS on August 24 and 25, 2010 and analyzed by Air Toxics, Ltd. All analyses were conducted in accordance with EPA Method TO-15 analysis and reporting protocols. The data contained in this SDG were validated with regard to the following parameters:

- **Data Completeness**
 - **Holding Times**
- GC/MS Tuning
- Initial/Continuing Calibrations
- Laboratory Method/Field Blank Results
 - Surrogate Recoveries
- Laboratory Control Sample Results
- Internal Standards
- Field Duplicate Precision
- Compound Quantitation
- Compound Identification
 - **Detection Limits**

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains Region II worksheets, and Appendix D contains the documentation to support the findings as discussed in this data validation report. The attached Table summarizes the validation qualifications which are based on the following information:

PAGE 2 SDG 1008666A

Volatiles

The surrogate spike recoveries for 4-bromofluorobenzene in samples BPS1-AR002-ST05 and BPS1-AR004-ST05 were greater than the laboratory acceptance limits. Positive results in samples BPS1-AR002-ST05 and BPS1-AR004-ST05 were qualified as estimated (J) on this basis.

Additional Comments

The Chain of Custody (COC) information for sample BPS1-DUP03-082610 did not match the sample tag upon receipt. The information on the COC was used to process the sample.

Positive results less than the reporting limit and greater than the detection limit were qualified as estimated (J) due to uncertainty near the detection limit.

The laboratory reported the VOC air result concentrations in units of both ppbv and ug/m³ on the sample forms. The results in the database and the qualified analytical results are reported in units of ug/m³ only.

EXECUTIVE SUMMARY

Laboratory Performance Issues: Some results were qualified as estimated due to surrogate recovery noncompliance.

Other Factors Affecting Data Quality: Some results were qualified due to uncertainty near the detection limit.

PAGE 3 SDG 1008666A

The data for these analyses were reviewed with reference to the "Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP# HW-31, Revision #4, October 2006, and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS

Leigh A. Ciofani Environmental Scientist/Data Validator

Tetra Tech NUS

Joseph A. Samchuck Data Validation Quality Assurance Officer

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Regional Worksheets Appendix D – Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can be any number of issues; e.g. poor chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

PROJ_NO: 02019	NSAMPLE	BPS1-AR002-ODA4		BPS1-AR002-ST05	10	BPS1-AR003-ST05		BPS1-AR004-ST05	
SDG: 1008666A	LAB_ID	1008666A-06A		1008666A-03A		1008666A-01A		1008666A-02A	
FRACTION: OV	SAMP_DATE	8/24/2010		8/24/2010		8/24/2010		8/24/2010	
MEDIA: AIR	QC_TYPE	NM		MN		ΣZ		NN	
	UNITS	UG/M3		UG/M3		UG/M3		UG/M3	
	PCT_SOLIDS								
	DUP_OF								
PARAMETER	:	RESULT VQL	alcd	RESULT VQL	L QLCD	RESULT VOL	QLCD	RESULT VQL	QLCD
1,1,1-TRICHLOROETHANE		0.062	۵	1.2 J	22	2.4		17	PR
1,1-DICHLOROETHANE		0.86 U		0.65 U		0.053 J	۵	0.061	PR
1,1-DICHLOROETHENE		0.84		0.048 J	PR	0.15 J	₽	0.61 U	
1,2-DICHLOROETHANE		U.076	۵	0.056 J	PR	1.7		0.15 J	PR
CIS-1,2-DICHLOROETHENE	Е	0.84 U		0.64 U		0.61 U		0.024 J	PR
TETRACHLOROETHENE		0.16 J	۵	3.9 J	ď	2.4		1.9 J	8
TRANS-1,2-DICHLOROETHENE	HENE.	0.84 U		0.64 U		0.61 U		0.61 U	
TRICHLOROETHENE		0.048	۵	P.6	ĸ	4.3		2.3 J	ß.
VINYL CHLORIDE		0.54 U		0.41 U		0.4 U		0.047	PR

PROJ_NO: 02019	NSAMPLE	BPS1-AR013-ST05		BPS1-AR014-ST05	T05	BPS1-DUP01-20100824	1824	BPS1-SVPM-2002D-082510	0-082510
SDG: 1008666A	LAB_ID	1008666A-04A		1008666A-05A		1008666A-07A		1008666A-08A	
FRACTION: OV	SAMP_DATE	8/24/2010		8/24/2010		8/24/2010		8/25/2010	
MEDIA: AIR	QC_TYPE	NN		ΣZ		NM		NN	
	UNITS	UG/M3		UG/M3		UG/M3		UG/M3	
	PCT_SOLIDS							0.0	
	DUP_OF					BPS1-AR013-ST05			
PARAMETER		RESULT VQL	alcd	RESULT	VQL QLCD	RESULT VQL	QLCD	RESULT VQL	QLCD.
1,1,1-TRICHLOROETHANE		0.31 J	Ъ	0.34	4	0.34 J	Д	-	
1,1-DICHLOROETHANE		0.66 U		U 257 U		0.0088	а	0.027	a.
1,1-DICHLOROETHENE		0.64 U		0.56 ר		0.58 U		0.58 U	
1,2-DICHLOROETHANE		0.082 J	۵	0.068	а.	0.039	۵	0.054 J	Ъ
CIS-1,2-DICHLOROETHENE	E	0.64 U		0.012	<u>a</u>	0.58 U	:	0.022 J	Ь
TETRACHLOROETHENE		2.2		2.9		2.5		4	
TRANS-1,2-DICHLOROETHENE	1ENE	0.64 U		0.56 L		0.58 U		0.58 U	
TRICHLOROETHENE		0.87		0.55		0.94		10	
VINYL CHLORIDE		0.41 U		0.36 U		0.38 U	-	0.022 J	௳

DDO 1 NO: 02040	NOAMDI E	ה אמי הי יסתם	001000	00540	מאמיוט דישמים	0000	00540
FROJ_NO. 02019	NOMINEE	DF-51-5VFIM-20021-062510	20021-02	01070	BF31-5VFIM-20023-082510	0.029-00	01.079
SDG: 1008666A	LAB_ID	1008666A-09A	,		1008666A-10A	_	
FRACTION: OV	SAMP_DATE	8/25/2010		,	8/25/2010		
MEDIA: AIR	QC_TYPE	ΣZ			ΣZ		
	UNITS	UG/M3			UG/M3		
	PCT_SOLIDS 0.0	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	Val	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANE		0.68			1.2		
1,1-DICHLOROETHANE		0.014		Ь	0.017 J	ſ	d
1,1-DICHLOROETHENE		U.037	٦	۵	0.071 J	ſ	<u>d</u>
1,2-DICHLOROETHANE		0.087	_ ا	۵	0.076 J	ſ	<u>-</u>
CIS-1,2-DICHLOROETHENE	ш	0.64	ר		0.58 U	n	
TETRACHLOROETHENE		1.8			3		
TRANS-1,2-DICHLOROETHENE	ENE	0.64 U	כ		0.58 L	n	
TRICHLOROETHENE		8			17		
VINYL CHLORIDE		0.41 U	_		0.028	7	Ь

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

D. BRAYACK

DATE:

OCTOBER 07, 2010

FROM:

LEIGH A. CIOFANI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

CTO WE06, NWIRP BETHPAGE

SAMPLE DELIVERY GROUP (SDG) 1008666B

SAMPLES:

11 / Air /

BPS1-DUP03-082610 BPS1-SVPM-2003D-082510

BPS1-SVPM-11S-082610

BPS1-SVPM-12S-082610

BPS1-SVPM-20041-082610

BPS1-SVPM-2003I-082610 BPS1-SVPM-2007D-082610 BPS1-SVPM-2004D-082610 BPS1-SVPM-DUP02-082610

BPS1-SVPM-ODA-082510

BPS1-SVPM-ODA-082610

OVERVIEW

The sample set for CTO WE06, NWIRP Bethpage, SDG 1008666B, consists of eleven (11) air environmental samples. There are two (2) field duplicate pairs included in this SDG: BPS1-SVPM-2004I-082610 (original) / BPS1-SVPM-DUP02-082610 (duplicate) and BPS1-SVPM-12S-082610 / BPS1-DUP03-082610 (duplicate).

Samples were analyzed for volatile organic compounds (VOC). The samples were collected by Tetra Tech NUS on August 25 and 26, 2010 and analyzed by Air Toxics, Ltd. All analyses were conducted in accordance with EPA Method TO-15 analysis and reporting protocols. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
- Holding Times
- GC/MS Tuning
 - Initial/Continuing Calibrations
 - Laboratory Method/Field Blank Results
- Surrogate Recoveries
 - Laboratory Control Sample Results
- Internal Standards
 - Field Duplicate Precision
- Compound Quantitation
 - Compound Identification
 - **Detection Limits**

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains Region II worksheets, and Appendix D contains the documentation to support the findings as discussed in this data validation report. The attached Table summarizes the validation qualifications which are based on the following information:

Volatiles

The following compounds were detected in method blank 1008666B-22B affecting samples BPS1-DUP03-082610, BPS1-SVPM-11S-082610, and BPS1-SVPM-12S-082610 in Preparation Batch P100914A:

PAGE 2 SDG 1008666B

 Compound
 Maximum

 1,2-Dichloroethane
 0.42 ug/m³
 2.1 ug/m³

 Tetrachloroethene
 1.3 ug/m³
 6.5 ug/m³

 Trichloroethene
 0.82 ug/m³
 4.1 ug/m³

Action levels of 5x the maximum concentrations were used to evaluate sample concentrations for blank contamination. Sample aliquot and dilution factors were considered in evaluating for blank contamination. No action was necessary because all positive results for these compounds were greater than the corresponding action levels. Positive results for 1,2-dichloroethane less than the associated action level were qualified as non-detected due to blank contamination (U). Positive results less than the reporting limit that were qualified due to blank contamination were raised to the reporting limit.

Additional Comments

The Chain of Custody (COC) information for sample BPS1-DUP03-082610 did not match the sample tag upon receipt. The information on the COC was used to process the sample.

Positive results less than the reporting limit and greater than the detection limit were qualified as estimated (J) due to uncertainty near the detection limit.

The laboratory reported the VOC air result concentrations in units of both ppbv and ug/m³ on the sample forms. The results in the database and the qualified analytical results are reported in units of ug/m³ only.

Samples prepared on 09/09/10 (BPS1-SVPM-12S-082610, BPS1-SVPM-11S-082610, and BPS1-DUP03-082610) had reporting limits of 0.5 ppbv, which is greater than the reporting limits specified in the statement of work, which listed reporting limits of 0.05 ppbv or 0.1 ppbv for all analytes. According to the laboratory narrative, samples BPS1-SVPM-12S-082610, BPS1-SVPM-11S-082610, and BPS1-DUP03-082610 were transferred from Low Level analysis to full scan TO-15 due to high levels of target compounds.

EXECUTIVE SUMMARY

Laboratory Performance Issues: Two sample results were qualified as non-detected due to laboratory method blank contamination.

Other Factors Affecting Data Quality: Some results were qualified due to uncertainty near the detection limit.

PAGE 3 SDG 1008666B

The data for these analyses were reviewed with reference to the "Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP# HW-31, Revision #4, October 2006, and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Teeh NUS

Leigh A. Ciofani

Environmental Scientist/Data Validator

Tetra Tech NUS

Joseph A. Samchuck

Data Validation Quality Assurance Officer

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Regional Worksheets

Appendix D - Support Documentation

APPENDIX A

QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can be any number of issues; e.g. poor chromatography, interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

02000		, 000.10	0,0000											٢
PROJ_NO: UZUTS	NUARTE	BPS1-DUP03-082610	082610		BPS1-SVPM-11S-082610	115-082	610	BPS1-SVPM-12S-082610	12S-0826	9	BPS1-SVPM-2003D-082510	103D-082	510	
SDG: 1008666B	LAB_ID	1008666B-20A			1008666B-18A	A		1008666B-17A	A		1008666B-11A			Т
FRACTION: OV	SAMP_DATE	8/26/2010			8/26/2010			8/26/2010			8/25/2010			Т
MEDIA: AIR	QC_TYPE	NM			NM			NM			WN			T
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3			Τ
	PCT_SOLIDS					\$	Workshill the Manager of manager of the state of the stat							1
. ,	DUP_OF	BPS1-SVPM-12S-082610	128-08261	0										Т
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	arcp	RESULT	VQL	GLCD	RESULT	VOL	CO	T
1,1,1-TRICHLOROETHANE	211	74			16			71			1.2			Т
1,1-DICHLOROETHANE		1.3	,	۵	8.4	ם		1,2	٦	۵	0.026	Ω.		Т
1,1-DICHLOROETHENE		3.4	n		8.2 U	ח		(6)	3 U		0.58			Τ
1,2-DICHLOROETHANE	The state of the s	3.5 U		٧	8.4	ח		3.1 U	n	A	0.063	Δ.		\top
CIS-1,2-DICHLOROETHENE	Ш	150			38			140		10.	0.58			Т
TETRACHLOROETHENE		53			330			55		may year and a second s	2.5			Т
TRANS-1,2-DICHLOROETHENE	TENE	2.5	_	<u>a</u>	4.1	~	<u>a</u> .	2.2	ŗ	Ь	0.58	_		~
TRICHLOROETHENE		1200			3100			1200			5.2			1
VINYL CHLORIDE		2.2 U	5		5.3 U	<u> </u>		1.9	1.9 U		0.37		57116	Т
						-								

PROJ NO: 02019	NSAMPLE	BPS1-SVPM-2003I-082	20031-082	2610	BPS1-SVPM-2004D-082610	2004D-0	82610	BPS1-SVPM-2004J-082610	41-082610	BPS1-SVPM-2007D-082610	082610
SDG: 1008666B	LAB_ID	1008666B-19A	_		1008666B-14A	4		1008666B-13A		1008666B-16A	
FRACTION: OV	SAMP_DATE	8/26/2010			8/26/2010			8/26/2010	74107	8/26/2010	
MEDIA: AIR	QC_TYPE	MN			NA NA			MN		NN	
	UNITS	UG/M3			UG/M3			UG/M3		UG/M3	
	PCT_SOLIDS										
	DUP_OF	-			, Perrenament		•				MAN TO THE TOTAL PROPERTY OF THE TOTAL PROPE
PARAMETER		RESULT	VOL	alcd	RESULT	Val	QLCD	RESULT	VAL ALCD	RESULT VQL	OLCD
1,1,1-TRICHLOROETHANE		0.23	_	۵	0.33	<u></u>	<u>a</u>	0.2 J	d.	1.5	
1,1-DICHLOROETHANE		0.64 U	ח		0.03		c.	0.072 J	۵	0.041	a
1,1-DICHLOROETHENE		0.63 U			0.63 U	2		0.043 J	d.	0.58 U	
1,2-DICHLOROETHANE		0.64	Ω		U 820.0	J	d.	0.065 J	Œ.	0.11 J	<u>.</u>
CIS-1,2-DICHLOROETHENE		0.63 U	n		0.63 U	⊐		0.61 U		0.95	
TETRACHLOROETHENE		9			2.9			1.8		2.7	
TRANS-1,2-DICHLOROETHENE	ENE	0.63 U	n		0.63	_		0.015	۵	0.054 J	<u>a.</u>
TRICHLOROETHENE		0.36		a.	0.47			0.28	Ь	1.5	
VINYL CHLORIDE		0.4 U	n		0.042		0	0.016	Ь	0.036	<u>a.</u>

PROJ_NO: 02019	NSAMPLE	BPS1-SVPM-DUP02-082610	02-082610	BPS1-SVPM-ODA-082510	DA-082510	BPS1-SVPM-ODA-082610	
SDG: 1008666B	OI_8AJ	1008666B-15A		1008666B-12A		1008666B-21A	
FRACTION: OV	SAMP_DATE	8/26/2010		8/25/2010		8/26/2010	
MEDIA: AIR	QC_TYPE	NN	3	MN		ΝN	
	ONITS	UG/M3		UG/M3		UG/M3	
	PCT_SOLIDS			**************************************	till the first of	TO THE PROPERTY OF THE PROPERT	
	PUP_OF	BPS1-SVPM-2004I-082610	41-082610				
PARAMETER		RESULT VC	VAL QLCD	RESULT	VQL QLCD	RESULT VOL QLCD	
1,1,1-TRICHLOROETHANE		0.17 J	۵	0.036	<u>a</u>	0.037 J P	
1,1-DICHLOROETHANE		U 670.0	<u>a</u>	0.96		0.81	
1,1-DICHLOROETHENE		0.63 U		0.94 U		0.8 U	
1,2-DICHLOROETHANE		0.056 J	ď	0,082	Б	0.1 P	
CIS-1,2-DICHLOROETHENE	ш	0.63 U		0.94	_	0.026 J P	
TETRACHLOROETHENE		2.1		0.27	a l	0.24 J P	
TRANS-1,2-DICHLOROETHEN	ENE	0.63 U		0.94		0.8 U	
TRICHLOROETHENE	,	0.26 J	Q.	0.044	<u>a</u>	0.04 J P	
VINYL CHLORIDE		0.028 J	Ф	0.6 U		0.51 U	
	*W****						